CVE-2021-29533 (GCVE-0-2021-29533)

Vulnerability from cvelistv5 – Published: 2021-05-14 19:12 – Updated: 2024-08-03 22:11
VLAI?
Title
CHECK-fail in DrawBoundingBoxes
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK` failure by passing an empty image to `tf.raw_ops.DrawBoundingBoxes`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/ea34a18dc3f5c8d80a40ccca1404f343b5d55f91/tensorflow/core/kernels/image/draw_bounding_box_op.cc#L148-L165) uses `CHECK_*` assertions instead of `OP_REQUIRES` to validate user controlled inputs. Whereas `OP_REQUIRES` allows returning an error condition back to the user, the `CHECK_*` macros result in a crash if the condition is false, similar to `assert`. In this case, `height` is 0 from the `images` input. This results in `max_box_row_clamp` being negative and the assertion being falsified, followed by aborting program execution. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
CWE
  • CWE-754 - Improper Check for Unusual or Exceptional Conditions
Assigner
Impacted products
Vendor Product Version
tensorflow tensorflow Affected: < 2.1.4
Affected: >= 2.2.0, < 2.2.3
Affected: >= 2.3.0, < 2.3.3
Affected: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:05.771Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-393f-2jr3-cp69"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/b432a38fe0e1b4b904a6c222cbce794c39703e87"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK` failure by passing an empty image to `tf.raw_ops.DrawBoundingBoxes`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/ea34a18dc3f5c8d80a40ccca1404f343b5d55f91/tensorflow/core/kernels/image/draw_bounding_box_op.cc#L148-L165) uses `CHECK_*` assertions instead of `OP_REQUIRES` to validate user controlled inputs. Whereas `OP_REQUIRES` allows returning an error condition back to the user, the `CHECK_*` macros result in a crash if the condition is false, similar to `assert`. In this case, `height` is 0 from the `images` input. This results in `max_box_row_clamp` being negative and the assertion being falsified, followed by aborting program execution. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-754",
              "description": "CWE-754: Improper Check for Unusual or Exceptional Conditions",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:12:02",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-393f-2jr3-cp69"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/b432a38fe0e1b4b904a6c222cbce794c39703e87"
        }
      ],
      "source": {
        "advisory": "GHSA-393f-2jr3-cp69",
        "discovery": "UNKNOWN"
      },
      "title": "CHECK-fail in DrawBoundingBoxes",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29533",
          "STATE": "PUBLIC",
          "TITLE": "CHECK-fail in DrawBoundingBoxes"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK` failure by passing an empty image to `tf.raw_ops.DrawBoundingBoxes`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/ea34a18dc3f5c8d80a40ccca1404f343b5d55f91/tensorflow/core/kernels/image/draw_bounding_box_op.cc#L148-L165) uses `CHECK_*` assertions instead of `OP_REQUIRES` to validate user controlled inputs. Whereas `OP_REQUIRES` allows returning an error condition back to the user, the `CHECK_*` macros result in a crash if the condition is false, similar to `assert`. In this case, `height` is 0 from the `images` input. This results in `max_box_row_clamp` being negative and the assertion being falsified, followed by aborting program execution. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-754: Improper Check for Unusual or Exceptional Conditions"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-393f-2jr3-cp69",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-393f-2jr3-cp69"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/b432a38fe0e1b4b904a6c222cbce794c39703e87",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/b432a38fe0e1b4b904a6c222cbce794c39703e87"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-393f-2jr3-cp69",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29533",
    "datePublished": "2021-05-14T19:12:02",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:05.771Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1",
  "vulnerability-lookup:meta": {
    "fkie_nvd": {
      "configurations": "[{\"nodes\": [{\"operator\": \"OR\", \"negate\": false, \"cpeMatch\": [{\"vulnerable\": true, \"criteria\": \"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\", \"versionEndExcluding\": \"2.1.4\", \"matchCriteriaId\": \"323ABCCE-24EB-47CC-87F6-48C101477587\"}, {\"vulnerable\": true, \"criteria\": \"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\", \"versionStartIncluding\": \"2.2.0\", \"versionEndExcluding\": \"2.2.3\", \"matchCriteriaId\": \"64ABA90C-0649-4BB0-89C9-83C14BBDCC0F\"}, {\"vulnerable\": true, \"criteria\": \"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\", \"versionStartIncluding\": \"2.3.0\", \"versionEndExcluding\": \"2.3.3\", \"matchCriteriaId\": \"0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9\"}, {\"vulnerable\": true, \"criteria\": \"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\", \"versionStartIncluding\": \"2.4.0\", \"versionEndExcluding\": \"2.4.2\", \"matchCriteriaId\": \"8259531B-A8AC-4F8B-B60F-B69DE4767C03\"}]}]}]",
      "descriptions": "[{\"lang\": \"en\", \"value\": \"TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK` failure by passing an empty image to `tf.raw_ops.DrawBoundingBoxes`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/ea34a18dc3f5c8d80a40ccca1404f343b5d55f91/tensorflow/core/kernels/image/draw_bounding_box_op.cc#L148-L165) uses `CHECK_*` assertions instead of `OP_REQUIRES` to validate user controlled inputs. Whereas `OP_REQUIRES` allows returning an error condition back to the user, the `CHECK_*` macros result in a crash if the condition is false, similar to `assert`. In this case, `height` is 0 from the `images` input. This results in `max_box_row_clamp` being negative and the assertion being falsified, followed by aborting program execution. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.\"}, {\"lang\": \"es\", \"value\": \"TensorFlow es una plataforma de c\\u00f3digo abierto de extremo a extremo para el aprendizaje autom\\u00e1tico.\u0026#xa0;Un atacante puede desencadenar una denegaci\\u00f3n de servicio por medio de un fallo de \\\"CHECK\\\" al pasar una imagen vac\\u00eda a \\\"tf.raw_ops.DrawBoundingBoxes\\\".\u0026#xa0;Esto es debido a que la implementaci\\u00f3n (https://github.com/tensorflow/tensorflow/blob/ea34a18dc3f5c8d80a40ccca1404f343b5d55f91/tensorflow/core/kernels/image/draw_bounding_box_op.cc#L148-L165) usa \\\"CHECIRES_ * para\\\" comprobar las entradas controladas por el usuario.\u0026#xa0;Mientras que \\\"OP_REQUIRES\\\" permite devolver una condici\\u00f3n de error al usuario, las macros\\\" CHECK_ * \\\"dan como resultado un bloqueo si la condici\\u00f3n es falsa, similar a\\\" assert\\\".\u0026#xa0;En este caso, \\\"height\\\" es 0 de la entrada de \\\"images\\\".\u0026#xa0;Esto resulta en que \\\"max_box_row_clamp\\\" sea negativo y la aserci\\u00f3n se falsifique, seguido de la interrupci\\u00f3n de una ejecuci\\u00f3n del programa.\u0026#xa0;La correcci\\u00f3n ser\\u00e1 inclu\\u00edda en TensorFlow versi\\u00f3n 2.5.0\"}]",
      "id": "CVE-2021-29533",
      "lastModified": "2024-11-21T06:01:19.577",
      "metrics": "{\"cvssMetricV31\": [{\"source\": \"security-advisories@github.com\", \"type\": \"Secondary\", \"cvssData\": {\"version\": \"3.1\", \"vectorString\": \"CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L\", \"baseScore\": 2.5, \"baseSeverity\": \"LOW\", \"attackVector\": \"LOCAL\", \"attackComplexity\": \"HIGH\", \"privilegesRequired\": \"LOW\", \"userInteraction\": \"NONE\", \"scope\": \"UNCHANGED\", \"confidentialityImpact\": \"NONE\", \"integrityImpact\": \"NONE\", \"availabilityImpact\": \"LOW\"}, \"exploitabilityScore\": 1.0, \"impactScore\": 1.4}, {\"source\": \"nvd@nist.gov\", \"type\": \"Primary\", \"cvssData\": {\"version\": \"3.1\", \"vectorString\": \"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H\", \"baseScore\": 5.5, \"baseSeverity\": \"MEDIUM\", \"attackVector\": \"LOCAL\", \"attackComplexity\": \"LOW\", \"privilegesRequired\": \"LOW\", \"userInteraction\": \"NONE\", \"scope\": \"UNCHANGED\", \"confidentialityImpact\": \"NONE\", \"integrityImpact\": \"NONE\", \"availabilityImpact\": \"HIGH\"}, \"exploitabilityScore\": 1.8, \"impactScore\": 3.6}], \"cvssMetricV2\": [{\"source\": \"nvd@nist.gov\", \"type\": \"Primary\", \"cvssData\": {\"version\": \"2.0\", \"vectorString\": \"AV:L/AC:L/Au:N/C:N/I:N/A:P\", \"baseScore\": 2.1, \"accessVector\": \"LOCAL\", \"accessComplexity\": \"LOW\", \"authentication\": \"NONE\", \"confidentialityImpact\": \"NONE\", \"integrityImpact\": \"NONE\", \"availabilityImpact\": \"PARTIAL\"}, \"baseSeverity\": \"LOW\", \"exploitabilityScore\": 3.9, \"impactScore\": 2.9, \"acInsufInfo\": false, \"obtainAllPrivilege\": false, \"obtainUserPrivilege\": false, \"obtainOtherPrivilege\": false, \"userInteractionRequired\": false}]}",
      "published": "2021-05-14T20:15:12.120",
      "references": "[{\"url\": \"https://github.com/tensorflow/tensorflow/commit/b432a38fe0e1b4b904a6c222cbce794c39703e87\", \"source\": \"security-advisories@github.com\", \"tags\": [\"Patch\", \"Third Party Advisory\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-393f-2jr3-cp69\", \"source\": \"security-advisories@github.com\", \"tags\": [\"Exploit\", \"Patch\", \"Third Party Advisory\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/commit/b432a38fe0e1b4b904a6c222cbce794c39703e87\", \"source\": \"af854a3a-2127-422b-91ae-364da2661108\", \"tags\": [\"Patch\", \"Third Party Advisory\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-393f-2jr3-cp69\", \"source\": \"af854a3a-2127-422b-91ae-364da2661108\", \"tags\": [\"Exploit\", \"Patch\", \"Third Party Advisory\"]}]",
      "sourceIdentifier": "security-advisories@github.com",
      "vulnStatus": "Modified",
      "weaknesses": "[{\"source\": \"security-advisories@github.com\", \"type\": \"Primary\", \"description\": [{\"lang\": \"en\", \"value\": \"CWE-754\"}]}]"
    },
    "nvd": "{\"cve\":{\"id\":\"CVE-2021-29533\",\"sourceIdentifier\":\"security-advisories@github.com\",\"published\":\"2021-05-14T20:15:12.120\",\"lastModified\":\"2024-11-21T06:01:19.577\",\"vulnStatus\":\"Modified\",\"cveTags\":[],\"descriptions\":[{\"lang\":\"en\",\"value\":\"TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK` failure by passing an empty image to `tf.raw_ops.DrawBoundingBoxes`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/ea34a18dc3f5c8d80a40ccca1404f343b5d55f91/tensorflow/core/kernels/image/draw_bounding_box_op.cc#L148-L165) uses `CHECK_*` assertions instead of `OP_REQUIRES` to validate user controlled inputs. Whereas `OP_REQUIRES` allows returning an error condition back to the user, the `CHECK_*` macros result in a crash if the condition is false, similar to `assert`. In this case, `height` is 0 from the `images` input. This results in `max_box_row_clamp` being negative and the assertion being falsified, followed by aborting program execution. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.\"},{\"lang\":\"es\",\"value\":\"TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un atacante puede desencadenar una denegaci\u00f3n de servicio por medio de un fallo de \\\"CHECK\\\" al pasar una imagen vac\u00eda a \\\"tf.raw_ops.DrawBoundingBoxes\\\".\u0026#xa0;Esto es debido a que la implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/ea34a18dc3f5c8d80a40ccca1404f343b5d55f91/tensorflow/core/kernels/image/draw_bounding_box_op.cc#L148-L165) usa \\\"CHECIRES_ * para\\\" comprobar las entradas controladas por el usuario.\u0026#xa0;Mientras que \\\"OP_REQUIRES\\\" permite devolver una condici\u00f3n de error al usuario, las macros\\\" CHECK_ * \\\"dan como resultado un bloqueo si la condici\u00f3n es falsa, similar a\\\" assert\\\".\u0026#xa0;En este caso, \\\"height\\\" es 0 de la entrada de \\\"images\\\".\u0026#xa0;Esto resulta en que \\\"max_box_row_clamp\\\" sea negativo y la aserci\u00f3n se falsifique, seguido de la interrupci\u00f3n de una ejecuci\u00f3n del programa.\u0026#xa0;La correcci\u00f3n ser\u00e1 inclu\u00edda en TensorFlow versi\u00f3n 2.5.0\"}],\"metrics\":{\"cvssMetricV31\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L\",\"baseScore\":2.5,\"baseSeverity\":\"LOW\",\"attackVector\":\"LOCAL\",\"attackComplexity\":\"HIGH\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"LOW\"},\"exploitabilityScore\":1.0,\"impactScore\":1.4},{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H\",\"baseScore\":5.5,\"baseSeverity\":\"MEDIUM\",\"attackVector\":\"LOCAL\",\"attackComplexity\":\"LOW\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"HIGH\"},\"exploitabilityScore\":1.8,\"impactScore\":3.6}],\"cvssMetricV2\":[{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"2.0\",\"vectorString\":\"AV:L/AC:L/Au:N/C:N/I:N/A:P\",\"baseScore\":2.1,\"accessVector\":\"LOCAL\",\"accessComplexity\":\"LOW\",\"authentication\":\"NONE\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"PARTIAL\"},\"baseSeverity\":\"LOW\",\"exploitabilityScore\":3.9,\"impactScore\":2.9,\"acInsufInfo\":false,\"obtainAllPrivilege\":false,\"obtainUserPrivilege\":false,\"obtainOtherPrivilege\":false,\"userInteractionRequired\":false}]},\"weaknesses\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Primary\",\"description\":[{\"lang\":\"en\",\"value\":\"CWE-754\"}]}],\"configurations\":[{\"nodes\":[{\"operator\":\"OR\",\"negate\":false,\"cpeMatch\":[{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionEndExcluding\":\"2.1.4\",\"matchCriteriaId\":\"323ABCCE-24EB-47CC-87F6-48C101477587\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.2.0\",\"versionEndExcluding\":\"2.2.3\",\"matchCriteriaId\":\"64ABA90C-0649-4BB0-89C9-83C14BBDCC0F\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.3.0\",\"versionEndExcluding\":\"2.3.3\",\"matchCriteriaId\":\"0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.4.0\",\"versionEndExcluding\":\"2.4.2\",\"matchCriteriaId\":\"8259531B-A8AC-4F8B-B60F-B69DE4767C03\"}]}]}],\"references\":[{\"url\":\"https://github.com/tensorflow/tensorflow/commit/b432a38fe0e1b4b904a6c222cbce794c39703e87\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-393f-2jr3-cp69\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Exploit\",\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/commit/b432a38fe0e1b4b904a6c222cbce794c39703e87\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-393f-2jr3-cp69\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Exploit\",\"Patch\",\"Third Party Advisory\"]}]}}"
  }
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or observed by the user.
  • Confirmed: The vulnerability has been validated from an analyst's perspective.
  • Published Proof of Concept: A public proof of concept is available for this vulnerability.
  • Exploited: The vulnerability was observed as exploited by the user who reported the sighting.
  • Patched: The vulnerability was observed as successfully patched by the user who reported the sighting.
  • Not exploited: The vulnerability was not observed as exploited by the user who reported the sighting.
  • Not confirmed: The user expressed doubt about the validity of the vulnerability.
  • Not patched: The vulnerability was not observed as successfully patched by the user who reported the sighting.


Loading…

Detection rules are retrieved from Rulezet.

Loading…

Loading…