ID CVE-2014-3646
Summary arch/x86/kvm/vmx.c in the KVM subsystem in the Linux kernel through 3.17.2 does not have an exit handler for the INVVPID instruction, which allows guest OS users to cause a denial of service (guest OS crash) via a crafted application.
References
Vulnerable Configurations
  • cpe:2.3:o:linux:linux_kernel:3.17.2
    cpe:2.3:o:linux:linux_kernel:3.17.2
  • cpe:2.3:o:linux:linux_kernel:3.17.1
    cpe:2.3:o:linux:linux_kernel:3.17.1
  • Linux Kernel 3.17
    cpe:2.3:o:linux:linux_kernel:3.17
  • Linux Kernel 3.0 release candidate 1
    cpe:2.3:o:linux:linux_kernel:3.0:rc1
  • Linux Kernel 3.0 release candidate 2
    cpe:2.3:o:linux:linux_kernel:3.0:rc2
  • Linux Kernel 3.0 release candidate 3
    cpe:2.3:o:linux:linux_kernel:3.0:rc3
  • Linux Kernel 3.0 release candidate 4
    cpe:2.3:o:linux:linux_kernel:3.0:rc4
  • Linux Kernel 3.0 release candidate 5
    cpe:2.3:o:linux:linux_kernel:3.0:rc5
  • Linux Kernel 3.0 release candidate 6
    cpe:2.3:o:linux:linux_kernel:3.0:rc6
  • Linux Kernel 3.0 release candidate 7
    cpe:2.3:o:linux:linux_kernel:3.0:rc7
  • Linux Kernel 3.0.1
    cpe:2.3:o:linux:linux_kernel:3.0.1
  • Linux Kernel 3.0.10
    cpe:2.3:o:linux:linux_kernel:3.0.10
  • Linux Kernel 3.0.11
    cpe:2.3:o:linux:linux_kernel:3.0.11
  • Linux Kernel 3.0.12
    cpe:2.3:o:linux:linux_kernel:3.0.12
  • Linux Kernel 3.0.13
    cpe:2.3:o:linux:linux_kernel:3.0.13
  • Linux Kernel 3.0.14
    cpe:2.3:o:linux:linux_kernel:3.0.14
  • Linux Kernel 3.0.15
    cpe:2.3:o:linux:linux_kernel:3.0.15
  • Linux Kernel 3.0.16
    cpe:2.3:o:linux:linux_kernel:3.0.16
  • Linux Kernel 3.0.17
    cpe:2.3:o:linux:linux_kernel:3.0.17
  • Linux Kernel 3.0.18
    cpe:2.3:o:linux:linux_kernel:3.0.18
  • Linux Kernel 3.0.19
    cpe:2.3:o:linux:linux_kernel:3.0.19
  • Linux Kernel 3.0.2
    cpe:2.3:o:linux:linux_kernel:3.0.2
  • Linux Kernel 3.0.20
    cpe:2.3:o:linux:linux_kernel:3.0.20
  • Linux Kernel 3.0.21
    cpe:2.3:o:linux:linux_kernel:3.0.21
  • Linux Kernel 3.0.22
    cpe:2.3:o:linux:linux_kernel:3.0.22
  • Linux Kernel 3.0.23
    cpe:2.3:o:linux:linux_kernel:3.0.23
  • Linux Kernel 3.0.24
    cpe:2.3:o:linux:linux_kernel:3.0.24
  • Linux Kernel 3.0.25
    cpe:2.3:o:linux:linux_kernel:3.0.25
  • Linux Kernel 3.0.26
    cpe:2.3:o:linux:linux_kernel:3.0.26
  • Linux Kernel 3.0.27
    cpe:2.3:o:linux:linux_kernel:3.0.27
  • Linux Kernel 3.0.28
    cpe:2.3:o:linux:linux_kernel:3.0.28
  • Linux Kernel 3.0.29
    cpe:2.3:o:linux:linux_kernel:3.0.29
  • Linux Kernel 3.0.3
    cpe:2.3:o:linux:linux_kernel:3.0.3
  • Linux Kernel 3.0.30
    cpe:2.3:o:linux:linux_kernel:3.0.30
  • Linux Kernel 3.0.31
    cpe:2.3:o:linux:linux_kernel:3.0.31
  • Linux Kernel 3.0.32
    cpe:2.3:o:linux:linux_kernel:3.0.32
  • Linux Kernel 3.0.33
    cpe:2.3:o:linux:linux_kernel:3.0.33
  • Linux Kernel 3.0.34
    cpe:2.3:o:linux:linux_kernel:3.0.34
  • Linux Kernel 3.0.35
    cpe:2.3:o:linux:linux_kernel:3.0.35
  • Linux Kernel 3.0.36
    cpe:2.3:o:linux:linux_kernel:3.0.36
  • Linux Kernel 3.0.37
    cpe:2.3:o:linux:linux_kernel:3.0.37
  • Linux Kernel 3.0.38
    cpe:2.3:o:linux:linux_kernel:3.0.38
  • Linux Kernel 3.0.39
    cpe:2.3:o:linux:linux_kernel:3.0.39
  • Linux Kernel 3.0.4
    cpe:2.3:o:linux:linux_kernel:3.0.4
  • Linux Kernel 3.0.40
    cpe:2.3:o:linux:linux_kernel:3.0.40
  • Linux Kernel 3.0.41
    cpe:2.3:o:linux:linux_kernel:3.0.41
  • Linux Kernel 3.0.42
    cpe:2.3:o:linux:linux_kernel:3.0.42
  • Linux Kernel 3.0.43
    cpe:2.3:o:linux:linux_kernel:3.0.43
  • Linux Kernel 3.0.44
    cpe:2.3:o:linux:linux_kernel:3.0.44
  • Linux Kernel 3.0.45
    cpe:2.3:o:linux:linux_kernel:3.0.45
  • Linux Kernel 3.0.46
    cpe:2.3:o:linux:linux_kernel:3.0.46
  • Linux Kernel 3.0.47
    cpe:2.3:o:linux:linux_kernel:3.0.47
  • Linux Kernel 3.0.48
    cpe:2.3:o:linux:linux_kernel:3.0.48
  • Linux Kernel 3.0.49
    cpe:2.3:o:linux:linux_kernel:3.0.49
  • Linux Kernel 3.0.5
    cpe:2.3:o:linux:linux_kernel:3.0.5
  • Linux Kernel 3.0.50
    cpe:2.3:o:linux:linux_kernel:3.0.50
  • Linux Kernel 3.0.51
    cpe:2.3:o:linux:linux_kernel:3.0.51
  • Linux Kernel 3.0.52
    cpe:2.3:o:linux:linux_kernel:3.0.52
  • Linux Kernel 3.0.53
    cpe:2.3:o:linux:linux_kernel:3.0.53
  • Linux Kernel 3.0.54
    cpe:2.3:o:linux:linux_kernel:3.0.54
  • Linux Kernel 3.0.55
    cpe:2.3:o:linux:linux_kernel:3.0.55
  • Linux Kernel 3.0.56
    cpe:2.3:o:linux:linux_kernel:3.0.56
  • Linux Kernel 3.0.57
    cpe:2.3:o:linux:linux_kernel:3.0.57
  • Linux Kernel 3.0.58
    cpe:2.3:o:linux:linux_kernel:3.0.58
  • Linux Kernel 3.0.59
    cpe:2.3:o:linux:linux_kernel:3.0.59
  • Linux Kernel 3.0.6
    cpe:2.3:o:linux:linux_kernel:3.0.6
  • Linux Kernel 3.0.60
    cpe:2.3:o:linux:linux_kernel:3.0.60
  • Linux Kernel 3.0.61
    cpe:2.3:o:linux:linux_kernel:3.0.61
  • Linux Kernel 3.0.62
    cpe:2.3:o:linux:linux_kernel:3.0.62
  • Linux Kernel 3.0.63
    cpe:2.3:o:linux:linux_kernel:3.0.63
  • Linux Kernel 3.0.64
    cpe:2.3:o:linux:linux_kernel:3.0.64
  • Linux Kernel 3.0.65
    cpe:2.3:o:linux:linux_kernel:3.0.65
  • Linux Kernel 3.0.66
    cpe:2.3:o:linux:linux_kernel:3.0.66
  • Linux Kernel 3.0.67
    cpe:2.3:o:linux:linux_kernel:3.0.67
  • Linux Kernel 3.0.68
    cpe:2.3:o:linux:linux_kernel:3.0.68
  • Linux Kernel 3.0.7
    cpe:2.3:o:linux:linux_kernel:3.0.7
  • Linux Kernel 3.0.8
    cpe:2.3:o:linux:linux_kernel:3.0.8
  • Linux Kernel 3.0.9
    cpe:2.3:o:linux:linux_kernel:3.0.9
  • Linux Kernel 3.1
    cpe:2.3:o:linux:linux_kernel:3.1
  • Linux Kernel 3.1 release candidate 1
    cpe:2.3:o:linux:linux_kernel:3.1:rc1
  • Linux Kernel 3.1 release candidate 2
    cpe:2.3:o:linux:linux_kernel:3.1:rc2
  • Linux Kernel 3.1 release candidate 3
    cpe:2.3:o:linux:linux_kernel:3.1:rc3
  • Linux Kernel 3.1 release candidate 4
    cpe:2.3:o:linux:linux_kernel:3.1:rc4
  • Linux Kernel 3.1.1
    cpe:2.3:o:linux:linux_kernel:3.1.1
  • Linux Kernel 3.1.10
    cpe:2.3:o:linux:linux_kernel:3.1.10
  • Linux Kernel 3.1.2
    cpe:2.3:o:linux:linux_kernel:3.1.2
  • Linux Kernel 3.1.3
    cpe:2.3:o:linux:linux_kernel:3.1.3
  • Linux Kernel 3.1.4
    cpe:2.3:o:linux:linux_kernel:3.1.4
  • Linux Kernel 3.1.5
    cpe:2.3:o:linux:linux_kernel:3.1.5
  • Linux Kernel 3.1.6
    cpe:2.3:o:linux:linux_kernel:3.1.6
  • Linux Kernel 3.1.7
    cpe:2.3:o:linux:linux_kernel:3.1.7
  • Linux Kernel 3.1.8
    cpe:2.3:o:linux:linux_kernel:3.1.8
  • Linux Kernel 3.1.9
    cpe:2.3:o:linux:linux_kernel:3.1.9
  • Linux Kernel 3.10
    cpe:2.3:o:linux:linux_kernel:3.10
  • Linux Kernel 3.10.0 on ARM64 architecture
    cpe:2.3:o:linux:linux_kernel:3.10.0:-:-:-:-:-:arm64
  • Linux Kernel 3.10.1
    cpe:2.3:o:linux:linux_kernel:3.10.1
  • Linux Kernel 3.10.1 on ARM64 architecture
    cpe:2.3:o:linux:linux_kernel:3.10.1:-:-:-:-:-:arm64
  • Linux Kernel 3.10.10
    cpe:2.3:o:linux:linux_kernel:3.10.10
  • Linux Kernel 3.10.11
    cpe:2.3:o:linux:linux_kernel:3.10.11
  • Linux Kernel 3.10.2
    cpe:2.3:o:linux:linux_kernel:3.10.12
  • Linux Kernel 3.10.13
    cpe:2.3:o:linux:linux_kernel:3.10.13
  • Linux Kernel 3.10.14
    cpe:2.3:o:linux:linux_kernel:3.10.14
  • Linux Kernel 3.10.15
    cpe:2.3:o:linux:linux_kernel:3.10.15
  • Linux Kernel 3.10.16
    cpe:2.3:o:linux:linux_kernel:3.10.16
  • Linux Kernel 3.10.17
    cpe:2.3:o:linux:linux_kernel:3.10.17
  • Linux Kernel 3.10.18
    cpe:2.3:o:linux:linux_kernel:3.10.18
  • Linux Kernel 3.10.19
    cpe:2.3:o:linux:linux_kernel:3.10.19
  • Linux Kernel 3.10.2
    cpe:2.3:o:linux:linux_kernel:3.10.2
  • Linux Kernel 3.10.2 on ARM64 architecture
    cpe:2.3:o:linux:linux_kernel:3.10.2:-:-:-:-:-:arm64
  • Linux Kernel 3.10.20
    cpe:2.3:o:linux:linux_kernel:3.10.20
  • Linux Kernel 3.10.21
    cpe:2.3:o:linux:linux_kernel:3.10.21
  • Linux Kernel 3.10.22
    cpe:2.3:o:linux:linux_kernel:3.10.22
  • Linux Kernel 3.10.23
    cpe:2.3:o:linux:linux_kernel:3.10.23
  • Linux Kernel 3.10.24
    cpe:2.3:o:linux:linux_kernel:3.10.24
  • Linux Kernel 3.10.25
    cpe:2.3:o:linux:linux_kernel:3.10.25
  • Linux Kernel 3.10.26
    cpe:2.3:o:linux:linux_kernel:3.10.26
  • Linux Kernel 3.10.27
    cpe:2.3:o:linux:linux_kernel:3.10.27
  • Linux Kernel 3.10.28
    cpe:2.3:o:linux:linux_kernel:3.10.28
  • Linux Kernel 3.10.29
    cpe:2.3:o:linux:linux_kernel:3.10.29
  • Linux Kernel 3.10.3
    cpe:2.3:o:linux:linux_kernel:3.10.3
  • Linux Kernel 3.10.3 on ARM64 architecture
    cpe:2.3:o:linux:linux_kernel:3.10.3:-:-:-:-:-:arm64
  • Linux Kernel 3.10.4
    cpe:2.3:o:linux:linux_kernel:3.10.4
  • Linux Kernel 3.10.4 on ARM64 architecture
    cpe:2.3:o:linux:linux_kernel:3.10.4:-:-:-:-:-:arm64
  • Linux Kernel 3.10.5
    cpe:2.3:o:linux:linux_kernel:3.10.5
  • Linux Kernel 3.10.5 on ARM64 architecture
    cpe:2.3:o:linux:linux_kernel:3.10.5:-:-:-:-:-:arm64
  • Linux Kernel 3.10.6
    cpe:2.3:o:linux:linux_kernel:3.10.6
  • Linux Kernel 3.10.6 on ARM64 architecture
    cpe:2.3:o:linux:linux_kernel:3.10.6:-:-:-:-:-:arm64
  • Linux Kernel 3.10.7
    cpe:2.3:o:linux:linux_kernel:3.10.7
  • Linux Kernel 3.10.7 on ARM64 architecture
    cpe:2.3:o:linux:linux_kernel:3.10.7:-:-:-:-:-:arm64
  • Linux Kernel 3.10.8
    cpe:2.3:o:linux:linux_kernel:3.10.8
  • Linux Kernel 3.10.8 on ARM64 architecture
    cpe:2.3:o:linux:linux_kernel:3.10.8:-:-:-:-:-:arm64
  • Linux Kernel 3.10.9
    cpe:2.3:o:linux:linux_kernel:3.10.9
  • Linux Kernel 3.10.9 on ARM64 architecture
    cpe:2.3:o:linux:linux_kernel:3.10.9:-:-:-:-:-:arm64
  • Linux Kernel 3.11
    cpe:2.3:o:linux:linux_kernel:3.11
  • Linux Kernel 3.11.1
    cpe:2.3:o:linux:linux_kernel:3.11.1
  • Linux Kernel 3.11.10
    cpe:2.3:o:linux:linux_kernel:3.11.10
  • Linux Kernel 3.11.2
    cpe:2.3:o:linux:linux_kernel:3.11.2
  • Linux Kernel 3.11.3
    cpe:2.3:o:linux:linux_kernel:3.11.3
  • Linux Kernel 3.11.4
    cpe:2.3:o:linux:linux_kernel:3.11.4
  • Linux Kernel 3.11.5
    cpe:2.3:o:linux:linux_kernel:3.11.5
  • Linux Kernel 3.11.6
    cpe:2.3:o:linux:linux_kernel:3.11.6
  • Linux Kernel 3.11.7
    cpe:2.3:o:linux:linux_kernel:3.11.7
  • Linux Kernel 3.11.8
    cpe:2.3:o:linux:linux_kernel:3.11.8
  • Linux Kernel 3.11.9
    cpe:2.3:o:linux:linux_kernel:3.11.9
  • Linux Kernel 3.12
    cpe:2.3:o:linux:linux_kernel:3.12
  • Linux Kernel 3.12.1
    cpe:2.3:o:linux:linux_kernel:3.12.1
  • Linux Kernel 3.12.10
    cpe:2.3:o:linux:linux_kernel:3.12.10
  • Linux Kernel 3.12.11
    cpe:2.3:o:linux:linux_kernel:3.12.11
  • Linux Kernel 3.12.12
    cpe:2.3:o:linux:linux_kernel:3.12.12
  • Linux Kernel 3.12.13
    cpe:2.3:o:linux:linux_kernel:3.12.13
  • Linux Kernel 3.12.14
    cpe:2.3:o:linux:linux_kernel:3.12.14
  • Linux Kernel 3.12.15
    cpe:2.3:o:linux:linux_kernel:3.12.15
  • Linux Kernel 3.12.16
    cpe:2.3:o:linux:linux_kernel:3.12.16
  • Linux Kernel 3.12.17
    cpe:2.3:o:linux:linux_kernel:3.12.17
  • Linux Kernel 3.12.2
    cpe:2.3:o:linux:linux_kernel:3.12.2
  • Linux Kernel 3.12.3
    cpe:2.3:o:linux:linux_kernel:3.12.3
  • Linux Kernel 3.12.4
    cpe:2.3:o:linux:linux_kernel:3.12.4
  • Linux Kernel 3.12.5
    cpe:2.3:o:linux:linux_kernel:3.12.5
  • Linux Kernel 3.12.6
    cpe:2.3:o:linux:linux_kernel:3.12.6
  • Linux Kernel 3.12.7
    cpe:2.3:o:linux:linux_kernel:3.12.7
  • Linux Kernel 3.12.8
    cpe:2.3:o:linux:linux_kernel:3.12.8
  • Linux Kernel 3.12.9
    cpe:2.3:o:linux:linux_kernel:3.12.9
  • Linux Kernel 3.13
    cpe:2.3:o:linux:linux_kernel:3.13
  • Linux Kernel 3.13.1
    cpe:2.3:o:linux:linux_kernel:3.13.1
  • Linux Kernel 3.13.10
    cpe:2.3:o:linux:linux_kernel:3.13.10
  • Linux Kernel 3.13.11
    cpe:2.3:o:linux:linux_kernel:3.13.11
  • Linux Kernel 3.13.2
    cpe:2.3:o:linux:linux_kernel:3.13.2
  • Linux Kernel 3.13.3
    cpe:2.3:o:linux:linux_kernel:3.13.3
  • Linux Kernel 3.13.4
    cpe:2.3:o:linux:linux_kernel:3.13.4
  • Linux Kernel 3.13.5
    cpe:2.3:o:linux:linux_kernel:3.13.5
  • Linux Kernel 3.13.6
    cpe:2.3:o:linux:linux_kernel:3.13.6
  • Linux Kernel 3.13.7
    cpe:2.3:o:linux:linux_kernel:3.13.7
  • Linux Kernel 3.13.8
    cpe:2.3:o:linux:linux_kernel:3.13.8
  • Linux Kernel 3.13.9
    cpe:2.3:o:linux:linux_kernel:3.13.9
  • Linux Kernel 3.14
    cpe:2.3:o:linux:linux_kernel:3.14
  • Linux Kernel 3.14 release candidate 1
    cpe:2.3:o:linux:linux_kernel:3.14:rc1
  • Linux Kernel 3.14 release candidate 2
    cpe:2.3:o:linux:linux_kernel:3.14:rc2
  • Linux Kernel 3.14 release candidate 3
    cpe:2.3:o:linux:linux_kernel:3.14:rc3
  • Linux Kernel 3.14 release candidate 4
    cpe:2.3:o:linux:linux_kernel:3.14:rc4
  • Linux Kernel 3.14 release candidate 5
    cpe:2.3:o:linux:linux_kernel:3.14:rc5
  • Linux Kernel 3.14 release candidate 6
    cpe:2.3:o:linux:linux_kernel:3.14:rc6
  • Linux Kernel 3.14 release candidate 7
    cpe:2.3:o:linux:linux_kernel:3.14:rc7
  • Linux Kernel 3.14 release candidate 8
    cpe:2.3:o:linux:linux_kernel:3.14:rc8
  • Linux Kernel 3.14.1
    cpe:2.3:o:linux:linux_kernel:3.14.1
  • Linux Kernel 3.14.2
    cpe:2.3:o:linux:linux_kernel:3.14.2
  • Linux Kernel 3.14.3
    cpe:2.3:o:linux:linux_kernel:3.14.3
  • Linux Kernel 3.14.4
    cpe:2.3:o:linux:linux_kernel:3.14.4
  • Linux Kernel 3.14.5
    cpe:2.3:o:linux:linux_kernel:3.14.5
  • Linux Kernel 3.15
    cpe:2.3:o:linux:linux_kernel:3.15
  • Linux Kernel 3.15.1
    cpe:2.3:o:linux:linux_kernel:3.15.1
  • Linux Kernel 3.15.2
    cpe:2.3:o:linux:linux_kernel:3.15.2
  • Linux Kernel 3.15.3
    cpe:2.3:o:linux:linux_kernel:3.15.3
  • Linux Kernel 3.15.4
    cpe:2.3:o:linux:linux_kernel:3.15.4
  • Linux Kernel 3.15.5
    cpe:2.3:o:linux:linux_kernel:3.15.5
  • Linux Kernel 3.15.6
    cpe:2.3:o:linux:linux_kernel:3.15.6
  • Linux Kernel 3.15.7
    cpe:2.3:o:linux:linux_kernel:3.15.7
  • Linux Kernel 3.15.8
    cpe:2.3:o:linux:linux_kernel:3.15.8
  • Linux Kernel 3.16.0
    cpe:2.3:o:linux:linux_kernel:3.16.0
  • Linux Kernel 3.16.1
    cpe:2.3:o:linux:linux_kernel:3.16.1
  • Linux Kernel 3.2
    cpe:2.3:o:linux:linux_kernel:3.2
  • Linux Kernel 3.2 (x86)
    cpe:2.3:o:linux:linux_kernel:3.2:-:-:-:-:-:x86
  • Linux Kernel 3.2 release candidate 2
    cpe:2.3:o:linux:linux_kernel:3.2:rc2
  • Linux Kernel 3.2 release candidate 3
    cpe:2.3:o:linux:linux_kernel:3.2:rc3
  • Linux Kernel 3.2 release candidate 4
    cpe:2.3:o:linux:linux_kernel:3.2:rc4
  • Linux Kernel 3.2 release candidate 5
    cpe:2.3:o:linux:linux_kernel:3.2:rc5
  • Linux Kernel 3.2 release candidate 6
    cpe:2.3:o:linux:linux_kernel:3.2:rc6
  • Linux Kernel 3.2 release candidate 7
    cpe:2.3:o:linux:linux_kernel:3.2:rc7
  • Linux Kernel 3.2.1
    cpe:2.3:o:linux:linux_kernel:3.2.1
  • Linux Kernel 3.2.1 (x86)
    cpe:2.3:o:linux:linux_kernel:3.2.1:-:-:-:-:-:x86
  • Linux Kernel 3.2.10
    cpe:2.3:o:linux:linux_kernel:3.2.10
  • Linux Kernel 3.2.11
    cpe:2.3:o:linux:linux_kernel:3.2.11
  • Linux Kernel 3.2.12
    cpe:2.3:o:linux:linux_kernel:3.2.12
  • Linux Kernel 3.2.13
    cpe:2.3:o:linux:linux_kernel:3.2.13
  • Linux Kernel 3.2.14
    cpe:2.3:o:linux:linux_kernel:3.2.14
  • Linux Kernel 3.2.15
    cpe:2.3:o:linux:linux_kernel:3.2.15
  • Linux Kernel 3.2.16
    cpe:2.3:o:linux:linux_kernel:3.2.16
  • Linux Kernel 3.2.17
    cpe:2.3:o:linux:linux_kernel:3.2.17
  • Linux Kernel 3.2.18
    cpe:2.3:o:linux:linux_kernel:3.2.18
  • Linux Kernel 3.2.19
    cpe:2.3:o:linux:linux_kernel:3.2.19
  • Linux Kernel 3.2.2
    cpe:2.3:o:linux:linux_kernel:3.2.2
  • Linux Kernel 3.2.20
    cpe:2.3:o:linux:linux_kernel:3.2.20
  • Linux Kernel 3.2.21
    cpe:2.3:o:linux:linux_kernel:3.2.21
  • Linux Kernel 3.2.22
    cpe:2.3:o:linux:linux_kernel:3.2.22
  • Linux Kernel 3.2.23
    cpe:2.3:o:linux:linux_kernel:3.2.23
  • Linux Kernel 3.2.24
    cpe:2.3:o:linux:linux_kernel:3.2.24
  • Linux Kernel 3.2.25
    cpe:2.3:o:linux:linux_kernel:3.2.25
  • Linux Kernel 3.2.26
    cpe:2.3:o:linux:linux_kernel:3.2.26
  • Linux Kernel 3.2.27
    cpe:2.3:o:linux:linux_kernel:3.2.27
  • Linux Kernel 3.2.28
    cpe:2.3:o:linux:linux_kernel:3.2.28
  • Linux Kernel 3.2.29
    cpe:2.3:o:linux:linux_kernel:3.2.29
  • Linux Kernel 3.2.3
    cpe:2.3:o:linux:linux_kernel:3.2.3
  • Linux Kernel 3.2.30
    cpe:2.3:o:linux:linux_kernel:3.2.30
  • Linux Kernel 3.2.4
    cpe:2.3:o:linux:linux_kernel:3.2.4
  • Linux Kernel 3.2.5
    cpe:2.3:o:linux:linux_kernel:3.2.5
  • Linux Kernel 3.2.6
    cpe:2.3:o:linux:linux_kernel:3.2.6
  • Linux Kernel 3.2.7
    cpe:2.3:o:linux:linux_kernel:3.2.7
  • Linux Kernel 3.2.8
    cpe:2.3:o:linux:linux_kernel:3.2.8
  • Linux Kernel 3.2.9
    cpe:2.3:o:linux:linux_kernel:3.2.9
  • Linux Kernel 3.3
    cpe:2.3:o:linux:linux_kernel:3.3
  • Linux Kernel 3.3 release candidate 1
    cpe:2.3:o:linux:linux_kernel:3.3:rc1
  • Linux Kernel 3.3 release candidate 2
    cpe:2.3:o:linux:linux_kernel:3.3:rc2
  • Linux Kernel 3.3 release candidate 3
    cpe:2.3:o:linux:linux_kernel:3.3:rc3
  • Linux Kernel 3.3 release candidate 4
    cpe:2.3:o:linux:linux_kernel:3.3:rc4
  • Linux Kernel 3.3 release candidate 5
    cpe:2.3:o:linux:linux_kernel:3.3:rc5
  • Linux Kernel 3.3 release candidate 6
    cpe:2.3:o:linux:linux_kernel:3.3:rc6
  • Linux Kernel 3.3 release candidate 7
    cpe:2.3:o:linux:linux_kernel:3.3:rc7
  • Linux Kernel 3.3.1
    cpe:2.3:o:linux:linux_kernel:3.3.1
  • Linux Kernel 3.3.2
    cpe:2.3:o:linux:linux_kernel:3.3.2
  • Linux Kernel 3.3.3
    cpe:2.3:o:linux:linux_kernel:3.3.3
  • Linux Kernel 3.3.4
    cpe:2.3:o:linux:linux_kernel:3.3.4
  • Linux Kernel 3.3.5
    cpe:2.3:o:linux:linux_kernel:3.3.5
  • Linux Kernel 3.3.6
    cpe:2.3:o:linux:linux_kernel:3.3.6
  • Linux Kernel 3.3.7
    cpe:2.3:o:linux:linux_kernel:3.3.7
  • Linux Kernel 3.3.8
    cpe:2.3:o:linux:linux_kernel:3.3.8
  • Linux Kernel 3.4
    cpe:2.3:o:linux:linux_kernel:3.4
  • Linux Kernel 3.4 (x86)
    cpe:2.3:o:linux:linux_kernel:3.4:-:-:-:-:-:x86
  • Linux Kernel 3.4 release candidate 1
    cpe:2.3:o:linux:linux_kernel:3.4:rc1
  • Linux Kernel 3.4 release candidate 1 (x86)
    cpe:2.3:o:linux:linux_kernel:3.4:rc1:-:-:-:-:x86
  • Linux Kernel 3.4 release candidate 2
    cpe:2.3:o:linux:linux_kernel:3.4:rc2
  • Linux Kernel 3.4 release candidate 2 (x86)
    cpe:2.3:o:linux:linux_kernel:3.4:rc2:-:-:-:-:x86
  • Linux Kernel 3.4 release candidate 3
    cpe:2.3:o:linux:linux_kernel:3.4:rc3
  • Linux Kernel 3.4 release candidate 3 (x86)
    cpe:2.3:o:linux:linux_kernel:3.4:rc3:-:-:-:-:x86
  • Linux Kernel 3.4 release candidate 4
    cpe:2.3:o:linux:linux_kernel:3.4:rc4
  • Linux Kernel 3.4 release candidate 4 (x86)
    cpe:2.3:o:linux:linux_kernel:3.4:rc4:-:-:-:-:x86
  • Linux Kernel 3.4 release candidate 5
    cpe:2.3:o:linux:linux_kernel:3.4:rc5
  • Linux Kernel 3.4 release candidate 5 (x86)
    cpe:2.3:o:linux:linux_kernel:3.4:rc5:-:-:-:-:x86
  • Linux Kernel 3.4 release candidate 6
    cpe:2.3:o:linux:linux_kernel:3.4:rc6
  • Linux Kernel 3.4 release candidate 6 (x86)
    cpe:2.3:o:linux:linux_kernel:3.4:rc6:-:-:-:-:x86
  • Linux Kernel 3.4 release candidate 7
    cpe:2.3:o:linux:linux_kernel:3.4:rc7
  • Linux Kernel 3.4 release candidate 7 (x86)
    cpe:2.3:o:linux:linux_kernel:3.4:rc7:-:-:-:-:x86
  • Linux Kernel 3.4.1
    cpe:2.3:o:linux:linux_kernel:3.4.1
  • Linux Kernel 3.4.1 (x86)
    cpe:2.3:o:linux:linux_kernel:3.4.1:-:-:-:-:-:x86
  • Linux Kernel 3.4.10
    cpe:2.3:o:linux:linux_kernel:3.4.10
  • Linux Kernel 3.4.11
    cpe:2.3:o:linux:linux_kernel:3.4.11
  • Linux Kernel 3.4.12
    cpe:2.3:o:linux:linux_kernel:3.4.12
  • Linux Kernel 3.4.13
    cpe:2.3:o:linux:linux_kernel:3.4.13
  • Linux Kernel 3.4.14
    cpe:2.3:o:linux:linux_kernel:3.4.14
  • Linux Kernel 3.4.15
    cpe:2.3:o:linux:linux_kernel:3.4.15
  • Linux Kernel 3.4.16
    cpe:2.3:o:linux:linux_kernel:3.4.16
  • Linux Kernel 3.4.17
    cpe:2.3:o:linux:linux_kernel:3.4.17
  • Linux Kernel 3.4.18
    cpe:2.3:o:linux:linux_kernel:3.4.18
  • Linux Kernel 3.4.19
    cpe:2.3:o:linux:linux_kernel:3.4.19
  • Linux Kernel 3.4.2
    cpe:2.3:o:linux:linux_kernel:3.4.2
  • Linux Kernel 3.4.2 (x86)
    cpe:2.3:o:linux:linux_kernel:3.4.2:-:-:-:-:-:x86
  • Linux Kernel 3.4.20
    cpe:2.3:o:linux:linux_kernel:3.4.20
  • Linux Kernel 3.4.21
    cpe:2.3:o:linux:linux_kernel:3.4.21
  • Linux Kernel 3.4.22
    cpe:2.3:o:linux:linux_kernel:3.4.22
  • Linux Kernel 3.4.23
    cpe:2.3:o:linux:linux_kernel:3.4.23
  • Linux Kernel 3.4.24
    cpe:2.3:o:linux:linux_kernel:3.4.24
  • Linux Kernel 3.4.25
    cpe:2.3:o:linux:linux_kernel:3.4.25
  • Linux Kernel 3.4.26
    cpe:2.3:o:linux:linux_kernel:3.4.26
  • Linux Kernel 3.4.27
    cpe:2.3:o:linux:linux_kernel:3.4.27
  • Linux Kernel 3.4.28
    cpe:2.3:o:linux:linux_kernel:3.4.28
  • Linux Kernel 3.4.29
    cpe:2.3:o:linux:linux_kernel:3.4.29
  • Linux Kernel 3.4.3
    cpe:2.3:o:linux:linux_kernel:3.4.3
  • Linux Kernel 3.4.3 (x86)
    cpe:2.3:o:linux:linux_kernel:3.4.3:-:-:-:-:-:x86
  • Linux Kernel 3.4.30
    cpe:2.3:o:linux:linux_kernel:3.4.30
  • Linux Kernel 3.4.31
    cpe:2.3:o:linux:linux_kernel:3.4.31
  • Linux Kernel 3.4.32
    cpe:2.3:o:linux:linux_kernel:3.4.32
  • Linux Kernel 3.4.33
    cpe:2.3:o:linux:linux_kernel:3.4.33
  • Linux Kernel 3.4.34
    cpe:2.3:o:linux:linux_kernel:3.4.34
  • Linux Kernel 3.4.35
    cpe:2.3:o:linux:linux_kernel:3.4.35
  • Linux Kernel 3.4.36
    cpe:2.3:o:linux:linux_kernel:3.4.36
  • Linux Kernel 3.4.37
    cpe:2.3:o:linux:linux_kernel:3.4.37
  • Linux Kernel 3.4.38
    cpe:2.3:o:linux:linux_kernel:3.4.38
  • Linux Kernel 3.4.39
    cpe:2.3:o:linux:linux_kernel:3.4.39
  • Linux Kernel 3.4.4
    cpe:2.3:o:linux:linux_kernel:3.4.4
  • Linux Kernel 3.4.4 (x86)
    cpe:2.3:o:linux:linux_kernel:3.4.4:-:-:-:-:-:x86
  • Linux Kernel 3.4.40
    cpe:2.3:o:linux:linux_kernel:3.4.40
  • Linux Kernel 3.4.41
    cpe:2.3:o:linux:linux_kernel:3.4.41
  • Linux Kernel 3.4.42
    cpe:2.3:o:linux:linux_kernel:3.4.42
  • Linux Kernel 3.4.43
    cpe:2.3:o:linux:linux_kernel:3.4.43
  • Linux Kernel 3.4.44
    cpe:2.3:o:linux:linux_kernel:3.4.44
  • Linux Kernel 3.4.45
    cpe:2.3:o:linux:linux_kernel:3.4.45
  • Linux Kernel 3.4.46
    cpe:2.3:o:linux:linux_kernel:3.4.46
  • Linux Kernel 3.4.47
    cpe:2.3:o:linux:linux_kernel:3.4.47
  • Linux Kernel 3.4.48
    cpe:2.3:o:linux:linux_kernel:3.4.48
  • Linux Kernel 3.4.49
    cpe:2.3:o:linux:linux_kernel:3.4.49
  • Linux Kernel 3.4.5
    cpe:2.3:o:linux:linux_kernel:3.4.5
  • Linux Kernel 3.4.5 (x86)
    cpe:2.3:o:linux:linux_kernel:3.4.5:-:-:-:-:-:x86
  • Linux Kernel 3.4.50
    cpe:2.3:o:linux:linux_kernel:3.4.50
  • Linux Kernel 3.4.51
    cpe:2.3:o:linux:linux_kernel:3.4.51
  • Linux Kernel 3.4.52
    cpe:2.3:o:linux:linux_kernel:3.4.52
  • Linux Kernel 3.4.53
    cpe:2.3:o:linux:linux_kernel:3.4.53
  • Linux Kernel 3.4.54
    cpe:2.3:o:linux:linux_kernel:3.4.54
  • Linux Kernel 3.4.55
    cpe:2.3:o:linux:linux_kernel:3.4.55
  • Linux Kernel 3.4.56
    cpe:2.3:o:linux:linux_kernel:3.4.56
  • Linux Kernel 3.4.57
    cpe:2.3:o:linux:linux_kernel:3.4.57
  • Linux Kernel 3.4.58
    cpe:2.3:o:linux:linux_kernel:3.4.58
  • Linux Kernel 3.4.59
    cpe:2.3:o:linux:linux_kernel:3.4.59
  • Linux Kernel 3.4.6
    cpe:2.3:o:linux:linux_kernel:3.4.6
  • Linux Kernel 3.4.60
    cpe:2.3:o:linux:linux_kernel:3.4.60
  • Linux Kernel 3.4.61
    cpe:2.3:o:linux:linux_kernel:3.4.61
  • Linux Kernel 3.4.62
    cpe:2.3:o:linux:linux_kernel:3.4.62
  • Linux Kernel 3.4.63
    cpe:2.3:o:linux:linux_kernel:3.4.63
  • Linux Kernel 3.4.64
    cpe:2.3:o:linux:linux_kernel:3.4.64
  • Linux Kernel 3.4.65
    cpe:2.3:o:linux:linux_kernel:3.4.65
  • Linux Kernel 3.4.66
    cpe:2.3:o:linux:linux_kernel:3.4.66
  • Linux Kernel 3.4.67
    cpe:2.3:o:linux:linux_kernel:3.4.67
  • Linux Kernel 3.4.68
    cpe:2.3:o:linux:linux_kernel:3.4.68
  • Linux Kernel 3.4.69
    cpe:2.3:o:linux:linux_kernel:3.4.69
  • Linux Kernel 3.4.7
    cpe:2.3:o:linux:linux_kernel:3.4.7
  • Linux Kernel 3.4.70
    cpe:2.3:o:linux:linux_kernel:3.4.70
  • Linux Kernel 3.4.71
    cpe:2.3:o:linux:linux_kernel:3.4.71
  • Linux Kernel 3.4.72
    cpe:2.3:o:linux:linux_kernel:3.4.72
  • Linux Kernel 3.4.73
    cpe:2.3:o:linux:linux_kernel:3.4.73
  • Linux Kernel 3.4.74
    cpe:2.3:o:linux:linux_kernel:3.4.74
  • Linux Kernel 3.4.75
    cpe:2.3:o:linux:linux_kernel:3.4.75
  • Linux Kernel 3.4.76
    cpe:2.3:o:linux:linux_kernel:3.4.76
  • Linux Kernel 3.4.77
    cpe:2.3:o:linux:linux_kernel:3.4.77
  • Linux Kernel 3.4.78
    cpe:2.3:o:linux:linux_kernel:3.4.78
  • Linux Kernel 3.4.79
    cpe:2.3:o:linux:linux_kernel:3.4.79
  • Linux Kernel 3.4.8
    cpe:2.3:o:linux:linux_kernel:3.4.8
  • Linux Kernel 3.4.9
    cpe:2.3:o:linux:linux_kernel:3.4.9
  • Linux Kernel 3.5.1
    cpe:2.3:o:linux:linux_kernel:3.5.1
  • Linux Kernel 3.5.2
    cpe:2.3:o:linux:linux_kernel:3.5.2
  • Linux Kernel 3.5.3
    cpe:2.3:o:linux:linux_kernel:3.5.3
  • Linux Kernel 3.5.4
    cpe:2.3:o:linux:linux_kernel:3.5.4
  • Linux Kernel 3.5.5
    cpe:2.3:o:linux:linux_kernel:3.5.5
  • Linux Kernel 3.5.6
    cpe:2.3:o:linux:linux_kernel:3.5.6
  • Linux Kernel 3.5.7
    cpe:2.3:o:linux:linux_kernel:3.5.7
  • Linux Kernel 3.6
    cpe:2.3:o:linux:linux_kernel:3.6
  • Linux Kernel 3.6.1
    cpe:2.3:o:linux:linux_kernel:3.6.1
  • Linux Kernel 3.6.10
    cpe:2.3:o:linux:linux_kernel:3.6.10
  • Linux Kernel 3.6.11
    cpe:2.3:o:linux:linux_kernel:3.6.11
  • Linux Kernel 3.6.2
    cpe:2.3:o:linux:linux_kernel:3.6.2
  • Linux Kernel 3.6.3
    cpe:2.3:o:linux:linux_kernel:3.6.3
  • Linux Kernel 3.6.4
    cpe:2.3:o:linux:linux_kernel:3.6.4
  • Linux Kernel 3.6.5
    cpe:2.3:o:linux:linux_kernel:3.6.5
  • Linux Kernel 3.6.6
    cpe:2.3:o:linux:linux_kernel:3.6.6
  • Linux Kernel 3.6.7
    cpe:2.3:o:linux:linux_kernel:3.6.7
  • Linux Kernel 3.6.8
    cpe:2.3:o:linux:linux_kernel:3.6.8
  • Linux Kernel 3.6.9
    cpe:2.3:o:linux:linux_kernel:3.6.9
  • Linux Kernel 3.7
    cpe:2.3:o:linux:linux_kernel:3.7
  • Linux Kernel 3.7.1
    cpe:2.3:o:linux:linux_kernel:3.7.1
  • Linux Kernel 3.7.10
    cpe:2.3:o:linux:linux_kernel:3.7.10
  • Linux Kernel 3.7.2
    cpe:2.3:o:linux:linux_kernel:3.7.2
  • Linux Kernel 3.7.3
    cpe:2.3:o:linux:linux_kernel:3.7.3
  • Linux Kernel 3.7.4
    cpe:2.3:o:linux:linux_kernel:3.7.4
  • Linux Kernel 3.7.5
    cpe:2.3:o:linux:linux_kernel:3.7.5
  • Linux Kernel 3.7.6
    cpe:2.3:o:linux:linux_kernel:3.7.6
  • Linux Kernel 3.7.7
    cpe:2.3:o:linux:linux_kernel:3.7.7
  • Linux Kernel 3.7.8
    cpe:2.3:o:linux:linux_kernel:3.7.8
  • Linux Kernel 3.7.9
    cpe:2.3:o:linux:linux_kernel:3.7.9
  • Linux Kernel 3.8.0
    cpe:2.3:o:linux:linux_kernel:3.8.0
  • Linux Kernel 3.8.1
    cpe:2.3:o:linux:linux_kernel:3.8.1
  • Linux Kernel 3.8.10
    cpe:2.3:o:linux:linux_kernel:3.8.10
  • Linux Kernel 3.8.11
    cpe:2.3:o:linux:linux_kernel:3.8.11
  • Linux Kernel 3.8.12
    cpe:2.3:o:linux:linux_kernel:3.8.12
  • Linux Kernel 3.8.13
    cpe:2.3:o:linux:linux_kernel:3.8.13
  • Linux Kernel 3.8.2
    cpe:2.3:o:linux:linux_kernel:3.8.2
  • Linux Kernel 3.8.3
    cpe:2.3:o:linux:linux_kernel:3.8.3
  • Linux Kernel 3.8.4
    cpe:2.3:o:linux:linux_kernel:3.8.4
  • Linux Kernel 3.8.5
    cpe:2.3:o:linux:linux_kernel:3.8.5
  • Linux Kernel 3.8.6
    cpe:2.3:o:linux:linux_kernel:3.8.6
  • Linux Kernel 3.8.7
    cpe:2.3:o:linux:linux_kernel:3.8.7
  • Linux Kernel 3.8.8
    cpe:2.3:o:linux:linux_kernel:3.8.8
  • Linux Kernel 3.8.9
    cpe:2.3:o:linux:linux_kernel:3.8.9
  • Linux Kernel 3.9 release candidate 1
    cpe:2.3:o:linux:linux_kernel:3.9:rc1
  • Linux Kernel 3.9 release candidate 2
    cpe:2.3:o:linux:linux_kernel:3.9:rc2
  • Linux Kernel 3.9 release candidate 3
    cpe:2.3:o:linux:linux_kernel:3.9:rc3
  • Linux Kernel 3.9 release candidate 4
    cpe:2.3:o:linux:linux_kernel:3.9:rc4
  • Linux Kernel 3.9 release candidate 5
    cpe:2.3:o:linux:linux_kernel:3.9:rc5
  • Linux Kernel 3.9 release candidate 6
    cpe:2.3:o:linux:linux_kernel:3.9:rc6
  • Linux Kernel 3.9 release candidate 7
    cpe:2.3:o:linux:linux_kernel:3.9:rc7
  • Linux Kernel 3.9.0
    cpe:2.3:o:linux:linux_kernel:3.9.0
  • Linux Kernel 3.9.0 on ARM64 architecture
    cpe:2.3:o:linux:linux_kernel:3.9.0:-:-:-:-:-:arm64
  • Linux Kernel 3.9.1
    cpe:2.3:o:linux:linux_kernel:3.9.1
  • Linux Kernel 3.9.1 on ARM64 architecture
    cpe:2.3:o:linux:linux_kernel:3.9.1:-:-:-:-:-:arm64
  • Linux Kernel 3.9.10
    cpe:2.3:o:linux:linux_kernel:3.9.10
  • Linux Kernel 3.9.10 on ARM64 architecture
    cpe:2.3:o:linux:linux_kernel:3.9.10:-:-:-:-:-:arm64
  • Linux Kernel 3.9.11
    cpe:2.3:o:linux:linux_kernel:3.9.11
  • Linux Kernel 3.9.11 on ARM64 architecture
    cpe:2.3:o:linux:linux_kernel:3.9.11:-:-:-:-:-:arm64
  • Linux Kernel 3.9.2
    cpe:2.3:o:linux:linux_kernel:3.9.2
  • Linux Kernel 3.9.2 on ARM64 architecture
    cpe:2.3:o:linux:linux_kernel:3.9.2:-:-:-:-:-:arm64
  • Linux Kernel 3.9.3
    cpe:2.3:o:linux:linux_kernel:3.9.3
  • Linux Kernel 3.9.3 on ARM64 architecture
    cpe:2.3:o:linux:linux_kernel:3.9.3:-:-:-:-:-:arm64
  • Linux Kernel 3.9.4
    cpe:2.3:o:linux:linux_kernel:3.9.4
  • Linux Kernel 3.9.4 on ARM64 architecture
    cpe:2.3:o:linux:linux_kernel:3.9.4:-:-:-:-:-:arm64
  • Linux Kernel 3.9.5
    cpe:2.3:o:linux:linux_kernel:3.9.5
  • Linux Kernel 3.9.5 on ARM64 architecture
    cpe:2.3:o:linux:linux_kernel:3.9.5:-:-:-:-:-:arm64
  • Linux Kernel 3.9.6
    cpe:2.3:o:linux:linux_kernel:3.9.6
  • Linux Kernel 3.9.6 on ARM64 architecture
    cpe:2.3:o:linux:linux_kernel:3.9.6:-:-:-:-:-:arm64
  • Linux Kernel 3.9.7
    cpe:2.3:o:linux:linux_kernel:3.9.7
  • Linux Kernel 3.9.7 on ARM64 architecture
    cpe:2.3:o:linux:linux_kernel:3.9.7:-:-:-:-:-:arm64
  • Linux Kernel 3.9.8
    cpe:2.3:o:linux:linux_kernel:3.9.8
  • Linux Kernel 3.9.8 on ARM64 architecture
    cpe:2.3:o:linux:linux_kernel:3.9.8:-:-:-:-:-:arm64
  • Linux Kernel 3.9.9
    cpe:2.3:o:linux:linux_kernel:3.9.9
  • Linux Kernel 3.9.9 on ARM64 architecture
    cpe:2.3:o:linux:linux_kernel:3.9.9:-:-:-:-:-:arm64
CVSS
Base: 2.1 (as of 10-11-2014 - 09:59)
Impact:
Exploitability:
CWE CWE-264
CAPEC
  • Accessing, Modifying or Executing Executable Files
    An attack of this type exploits a system's configuration that allows an attacker to either directly access an executable file, for example through shell access; or in a possible worst case allows an attacker to upload a file and then execute it. Web servers, ftp servers, and message oriented middleware systems which have many integration points are particularly vulnerable, because both the programmers and the administrators must be in synch regarding the interfaces and the correct privileges for each interface.
  • Leverage Executable Code in Non-Executable Files
    An attack of this type exploits a system's trust in configuration and resource files, when the executable loads the resource (such as an image file or configuration file) the attacker has modified the file to either execute malicious code directly or manipulate the target process (e.g. application server) to execute based on the malicious configuration parameters. Since systems are increasingly interrelated mashing up resources from local and remote sources the possibility of this attack occurring is high. The attack can be directed at a client system, such as causing buffer overrun through loading seemingly benign image files, as in Microsoft Security Bulletin MS04-028 where specially crafted JPEG files could cause a buffer overrun once loaded into the browser. Another example targets clients reading pdf files. In this case the attacker simply appends javascript to the end of a legitimate url for a pdf (http://www.gnucitizen.org/blog/danger-danger-danger/) http://path/to/pdf/file.pdf#whatever_name_you_want=javascript:your_code_here The client assumes that they are reading a pdf, but the attacker has modified the resource and loaded executable javascript into the client's browser process. The attack can also target server processes. The attacker edits the resource or configuration file, for example a web.xml file used to configure security permissions for a J2EE app server, adding role name "public" grants all users with the public role the ability to use the administration functionality. The server trusts its configuration file to be correct, but when they are manipulated, the attacker gains full control.
  • Blue Boxing
    This type of attack against older telephone switches and trunks has been around for decades. A tone is sent by an adversary to impersonate a supervisor signal which has the effect of rerouting or usurping command of the line. While the US infrastructure proper may not contain widespread vulnerabilities to this type of attack, many companies are connected globally through call centers and business process outsourcing. These international systems may be operated in countries which have not upgraded Telco infrastructure and so are vulnerable to Blue boxing. Blue boxing is a result of failure on the part of the system to enforce strong authorization for administrative functions. While the infrastructure is different than standard current applications like web applications, there are historical lessons to be learned to upgrade the access control for administrative functions.
  • Restful Privilege Elevation
    Rest uses standard HTTP (Get, Put, Delete) style permissions methods, but these are not necessarily correlated generally with back end programs. Strict interpretation of HTTP get methods means that these HTTP Get services should not be used to delete information on the server, but there is no access control mechanism to back up this logic. This means that unless the services are properly ACL'd and the application's service implementation are following these guidelines then an HTTP request can easily execute a delete or update on the server side. The attacker identifies a HTTP Get URL such as http://victimsite/updateOrder, which calls out to a program to update orders on a database or other resource. The URL is not idempotent so the request can be submitted multiple times by the attacker, additionally, the attacker may be able to exploit the URL published as a Get method that actually performs updates (instead of merely retrieving data). This may result in malicious or inadvertent altering of data on the server.
  • Target Programs with Elevated Privileges
    This attack targets programs running with elevated privileges. The attacker would try to leverage a bug in the running program and get arbitrary code to execute with elevated privileges. For instance an attacker would look for programs that write to the system directories or registry keys (such as HKLM, which stores a number of critical Windows environment variables). These programs are typically running with elevated privileges and have usually not been designed with security in mind. Such programs are excellent exploit targets because they yield lots of power when they break. The malicious user try to execute its code at the same level as a privileged system call.
  • Manipulating Input to File System Calls
    An attacker manipulates inputs to the target software which the target software passes to file system calls in the OS. The goal is to gain access to, and perhaps modify, areas of the file system that the target software did not intend to be accessible.
Access
VectorComplexityAuthentication
LOCAL LOW NONE
Impact
ConfidentialityIntegrityAvailability
NONE NONE PARTIAL
nessus via4
  • NASL family Oracle Linux Local Security Checks
    NASL id ORACLELINUX_ELSA-2015-1272.NASL
    description The remote Oracle Linux host is missing a security update for one or more kernel-related packages.
    last seen 2019-02-21
    modified 2018-09-17
    plugin id 85097
    published 2015-07-30
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=85097
    title Oracle Linux 6 : kernel (ELSA-2015-1272)
  • NASL family SuSE Local Security Checks
    NASL id SUSE_11_KERNEL-141217.NASL
    description The SUSE Linux Enterprise 11 Service Pack 3 kernel has been updated to fix various bugs and security issues. The following security bugs have been fixed : - The __request_module function in kernel/kmod.c in the Linux kernel before 3.4 did not set a certain killable attribute, which allowed local users to cause a denial of service (memory consumption) via a crafted application. (bnc#779488). (CVE-2012-4398) - drivers/hid/hid-zpff.c in the Human Interface Device (HID) subsystem in the Linux kernel through 3.11, when CONFIG_HID_ZEROPLUS is enabled, allowed physically proximate attackers to cause a denial of service (heap-based out-of-bounds write) via a crafted device. (bnc#835839). (CVE-2013-2889) - The Human Interface Device (HID) subsystem in the Linux kernel through 3.11, when CONFIG_LOGITECH_FF, CONFIG_LOGIG940_FF, or CONFIG_LOGIWHEELS_FF is enabled, allowed physically proximate attackers to cause a denial of service (heap-based out-of-bounds write) via a crafted device, related to (1) drivers/hid/hid-lgff.c, (2) drivers/hid/hid-lg3ff.c, and (3) drivers/hid/hid-lg4ff.c. (bnc#835839). (CVE-2013-2893) - Multiple array index errors in drivers/hid/hid-multitouch.c in the Human Interface Device (HID) subsystem in the Linux kernel through 3.11, when CONFIG_HID_MULTITOUCH is enabled, allowed physically proximate attackers to cause a denial of service (heap memory corruption, or NULL pointer dereference and OOPS) via a crafted device. (bnc#835839). (CVE-2013-2897) - drivers/hid/hid-picolcd_core.c in the Human Interface Device (HID) subsystem in the Linux kernel through 3.11, when CONFIG_HID_PICOLCD is enabled, allowed physically proximate attackers to cause a denial of service (NULL pointer dereference and OOPS) via a crafted device. (bnc#835839). (CVE-2013-2899) - The Linux kernel before 3.12.4 updates certain length values before ensuring that associated data structures have been initialized, which allowed local users to obtain sensitive information from kernel stack memory via a (1) recvfrom, (2) recvmmsg, or (3) recvmsg system call, related to net/ipv4/ping.c, net/ipv4/raw.c, net/ipv4/udp.c, net/ipv6/raw.c, and net/ipv6/udp.c. (bnc#853040, bnc#857643). (CVE-2013-7263) - Multiple stack-based buffer overflows in the magicmouse_raw_event function in drivers/hid/hid-magicmouse.c in the Magic Mouse HID driver in the Linux kernel through 3.16.3 allowed physically proximate attackers to cause a denial of service (system crash) or possibly execute arbitrary code via a crafted device that provides a large amount of (1) EHCI or (2) XHCI data associated with an event. (bnc#896382). (CVE-2014-3181) - The report_fixup functions in the HID subsystem in the Linux kernel before 3.16.2 allowed physically proximate attackers to cause a denial of service (out-of-bounds write) via a crafted device that provides a small report descriptor, related to (1) drivers/hid/hid-cherry.c, (2) drivers/hid/hid-kye.c, (3) drivers/hid/hid-lg.c, (4) drivers/hid/hid-monterey.c, (5) drivers/hid/hid-petalynx.c, and (6) drivers/hid/hid-sunplus.c. (bnc#896390). (CVE-2014-3184) - Multiple buffer overflows in the command_port_read_callback function in drivers/usb/serial/whiteheat.c in the Whiteheat USB Serial Driver in the Linux kernel before 3.16.2 allowed physically proximate attackers to execute arbitrary code or cause a denial of service (memory corruption and system crash) via a crafted device that provides a large amount of (1) EHCI or (2) XHCI data associated with a bulk response. (bnc#896391). (CVE-2014-3185) - Buffer overflow in the picolcd_raw_event function in devices/hid/hid-picolcd_core.c in the PicoLCD HID device driver in the Linux kernel through 3.16.3, as used in Android on Nexus 7 devices, allowed physically proximate attackers to cause a denial of service (system crash) or possibly execute arbitrary code via a crafted device that sends a large report. (bnc#896392). (CVE-2014-3186) - The kvm_iommu_map_pages function in virt/kvm/iommu.c in the Linux kernel through 3.16.1 miscalculated the number of pages during the handling of a mapping failure, which allowed guest OS users to (1) cause a denial of service (host OS memory corruption) or possibly have unspecified other impact by triggering a large gfn value or (2) cause a denial of service (host OS memory consumption) by triggering a small gfn value that leads to permanently pinned pages. (bnc#892782). (CVE-2014-3601) - The WRMSR processing functionality in the KVM subsystem in the Linux kernel through 3.17.2 did not properly handle the writing of a non-canonical address to a model-specific register, which allowed guest OS users to cause a denial of service (host OS crash) by leveraging guest OS privileges, related to the wrmsr_interception function in arch/x86/kvm/svm.c and the handle_wrmsr function in arch/x86/kvm/vmx.c. (bnc#899192). (CVE-2014-3610) - arch/x86/kvm/vmx.c in the KVM subsystem in the Linux kernel through 3.17.2 did not have an exit handler for the INVVPID instruction, which allowed guest OS users to cause a denial of service (guest OS crash) via a crafted application. (bnc#899192). (CVE-2014-3646) - arch/x86/kvm/emulate.c in the KVM subsystem in the Linux kernel through 3.17.2 did not properly perform RIP changes, which allowed guest OS users to cause a denial of service (guest OS crash) via a crafted application. (bnc#899192). (CVE-2014-3647) - The SCTP implementation in the Linux kernel through 3.17.2 allowed remote attackers to cause a denial of service (system crash) via a malformed ASCONF chunk, related to net/sctp/sm_make_chunk.c and net/sctp/sm_statefuns.c. (bnc#902346, bnc#902349). (CVE-2014-3673) - arch/x86/kernel/entry_32.S in the Linux kernel through 3.15.1 on 32-bit x86 platforms, when syscall auditing is enabled and the sep CPU feature flag is set, allowed local users to cause a denial of service (OOPS and system crash) via an invalid syscall number, as demonstrated by number 1000. (bnc#883724). (CVE-2014-4508) - * DISPUTED * Multiple integer overflows in the lzo1x_decompress_safe function in lib/lzo/lzo1x_decompress_safe.c in the LZO decompressor in the Linux kernel before 3.15.2 allowed context-dependent attackers to cause a denial of service (memory corruption) via a crafted Literal Run. NOTE: the author of the LZO algorithms says: The Linux kernel is not affected; media hype. (bnc#883948). (CVE-2014-4608) - kernel/trace/trace_syscalls.c in the Linux kernel through 3.17.2 did not properly handle private syscall numbers during use of the ftrace subsystem, which allowed local users to gain privileges or cause a denial of service (invalid pointer dereference) via a crafted application. (bnc#904013). (CVE-2014-7826) - An SCTP server doing ASCONF would panic on malformed INIT ping-of-death. (bnc#905100). (CVE-2014-7841) - The ieee80211_fragment function in net/mac80211/tx.c in the Linux kernel before 3.13.5 did not properly maintain a certain tail pointer, which allowed remote attackers to obtain sensitive cleartext information by reading packets. (bnc#904700). (CVE-2014-8709) - A local user with write access could have used this flaw to crash the kernel or elevate privileges (bnc#905522). The following non-security bugs have been fixed:. (CVE-2014-8884) - Build the KOTD against the SP3 Update project - HID: fix kabi breakage. - NFS: Provide stub nfs_fscache_wait_on_invalidate() for when CONFIG_NFS_FSCACHE=n. - NFS: fix inverted test for delegation in nfs4_reclaim_open_state. (bnc#903331) - NFS: remove incorrect Lock reclaim failed! warning. (bnc#903331) - NFSv4: nfs4_open_done first must check that GETATTR decoded a file type. (bnc#899574) - PCI: pciehp: Clear Data Link Layer State Changed during init. (bnc#898295) - PCI: pciehp: Enable link state change notifications. (bnc#898295) - PCI: pciehp: Handle push button event asynchronously. (bnc#898295) - PCI: pciehp: Make check_link_active() non-static. (bnc#898295) - PCI: pciehp: Use link change notifications for hot-plug and removal. (bnc#898295) - PCI: pciehp: Use per-slot workqueues to avoid deadlock. (bnc#898295) - PCI: pciehp: Use symbolic constants, not hard-coded bitmask. (bnc#898295) - PM / hibernate: Iterate over set bits instead of PFNs in swsusp_free(). (bnc#860441) - be2net: Fix invocation of be_close() after be_clear(). (bnc#895468) - block: Fix bogus partition statistics reports. (bnc#885077 / bnc#891211) - block: Fix computation of merged request priority. - btrfs: Fix wrong device size when we are resizing the device. - btrfs: Return right extent when fiemap gives unaligned offset and len. - btrfs: abtract out range locking in clone ioctl(). - btrfs: always choose work from prio_head first. - btrfs: balance delayed inode updates. - btrfs: cache extent states in defrag code path. - btrfs: check file extent type before anything else. (bnc#897694) - btrfs: clone, do not create invalid hole extent map. - btrfs: correctly determine if blocks are shared in btrfs_compare_trees. - btrfs: do not bug_on if we try to cow a free space cache inode. - btrfs: ensure btrfs_prev_leaf does not miss 1 item. - btrfs: ensure readers see new data after a clone operation. - btrfs: fill_holes: Fix slot number passed to hole_mergeable() call. - btrfs: filter invalid arg for btrfs resize. - btrfs: fix EINVAL checks in btrfs_clone. - btrfs: fix EIO on reading file after ioctl clone works on it. - btrfs: fix a crash of clone with inline extents split. - btrfs: fix crash of compressed writes. (bnc#898375) - btrfs: fix crash when starting transaction. - btrfs: fix deadlock with nested trans handles. - btrfs: fix hang on error (such as ENOSPC) when writing extent pages. - btrfs: fix leaf corruption after __btrfs_drop_extents. - btrfs: fix race between balance recovery and root deletion. - btrfs: fix wrong extent mapping for DirectIO. - btrfs: handle a missing extent for the first file extent. - btrfs: limit delalloc pages outside of find_delalloc_range. (bnc#898375) - btrfs: read lock extent buffer while walking backrefs. - btrfs: remove unused wait queue in struct extent_buffer. - btrfs: replace EINVAL with ERANGE for resize when ULLONG_MAX. - btrfs: replace error code from btrfs_drop_extents. - btrfs: unlock extent and pages on error in cow_file_range. - btrfs: unlock inodes in correct order in clone ioctl. - btrfs_ioctl_clone: Move clone code into its own function. - cifs: delay super block destruction until all cifsFileInfo objects are gone. (bnc#903653) - drm/i915: Flush the PTEs after updating them before suspend. (bnc#901638) - drm/i915: Undo gtt scratch pte unmapping again. (bnc#901638) - ext3: return 32/64-bit dir name hash according to usage type. (bnc#898554) - ext4: return 32/64-bit dir name hash according to usage type. (bnc#898554) - fix: use after free of xfs workqueues. (bnc#894895) - fs: add new FMODE flags: FMODE_32bithash and FMODE_64bithash. (bnc#898554) - futex: Ensure get_futex_key_refs() always implies a barrier (bnc#851603 (futex scalability series)). - futex: Fix a race condition between REQUEUE_PI and task death (bnc#851603 (futex scalability series)). - ipv6: add support of peer address. (bnc#896415) - ipv6: fix a refcnt leak with peer addr. (bnc#896415) - megaraid_sas: Disable fastpath writes for non-RAID0. (bnc#897502) - mm: change __remove_pages() to call release_mem_region_adjustable(). (bnc#891790) - netxen: Fix link event handling. (bnc#873228) - netxen: fix link notification order. (bnc#873228) - nfsd: rename int access to int may_flags in nfsd_open(). (bnc#898554) - nfsd: vfs_llseek() with 32 or 64 bit offsets (hashes). (bnc#898554) - ocfs2: fix NULL pointer dereference in ocfs2_duplicate_clusters_by_page. (bnc#899843) - powerpc: Add smp_mb() to arch_spin_is_locked() (bsc#893758). - powerpc: Add smp_mb()s to arch_spin_unlock_wait() (bsc#893758). - powerpc: Add support for the optimised lockref implementation (bsc#893758). - powerpc: Implement arch_spin_is_locked() using arch_spin_value_unlocked() (bsc#893758). - refresh patches.xen/xen-blkback-multi-page-ring (bnc#897708)). - remove filesize checks for sync I/O journal commit. (bnc#800255) - resource: add __adjust_resource() for internal use. (bnc#891790) - resource: add release_mem_region_adjustable(). (bnc#891790) - revert PM / Hibernate: Iterate over set bits instead of PFNs in swsusp_free(). (bnc#860441) - rpm/mkspec: Generate specfiles according to Factory requirements. - rpm/mkspec: Generate a per-architecture per-package _constraints file - sched: Fix unreleased llc_shared_mask bit during CPU hotplug. (bnc#891368) - scsi_dh_alua: disable ALUA handling for non-disk devices. (bnc#876633) - usb: Do not re-read descriptors for wired devices in usb_authorize_device(). (bnc#904358) - usbback: Do not access request fields in shared ring more than once. - usbhid: add another mouse that needs QUIRK_ALWAYS_POLL. (bnc#888607) - vfs,proc: guarantee unique inodes in /proc. (bnc#868049) - x86, cpu hotplug: Fix stack frame warning incheck_irq_vectors_for_cpu_disable(). (bnc#887418) - x86, ioremap: Speed up check for RAM pages (Boot time optimisations (bnc#895387)). - x86: Add check for number of available vectors before CPU down. (bnc#887418) - x86: optimize resource lookups for ioremap (Boot time optimisations (bnc#895387)). - x86: use optimized ioresource lookup in ioremap function (Boot time optimisations (bnc#895387)). - xfs: Do not free EFIs before the EFDs are committed (bsc#755743). - xfs: Do not reference the EFI after it is freed (bsc#755743). - xfs: fix cil push sequence after log recovery (bsc#755743). - zcrypt: support for extended number of ap domains (bnc#894058, LTC#117041). - zcrypt: toleration of new crypto adapter hardware (bnc#894058, LTC#117041).
    last seen 2019-02-21
    modified 2014-12-26
    plugin id 80250
    published 2014-12-26
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=80250
    title SuSE 11.3 Security Update : Linux kernel (SAT Patch Number 10103)
  • NASL family Red Hat Local Security Checks
    NASL id REDHAT-RHSA-2015-0126.NASL
    description An updated rhev-hypervisor6 package that fixes multiple security issues is now available for Red Hat Enterprise Virtualization 3. Red Hat Product Security has rated this update as having Critical security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. The rhev-hypervisor6 package provides a Red Hat Enterprise Virtualization Hypervisor ISO disk image. The Red Hat Enterprise Virtualization Hypervisor is a dedicated Kernel-based Virtual Machine (KVM) hypervisor. It includes everything necessary to run and manage virtual machines: a subset of the Red Hat Enterprise Linux operating environment and the Red Hat Enterprise Virtualization Agent. Note: Red Hat Enterprise Virtualization Hypervisor is only available for the Intel 64 and AMD64 architectures with virtualization extensions. A heap-based buffer overflow was found in glibc's __nss_hostname_digits_dots() function, which is used by the gethostbyname() and gethostbyname2() glibc function calls. A remote attacker able to make an application call either of these functions could use this flaw to execute arbitrary code with the permissions of the user running the application. (CVE-2015-0235) A race condition flaw was found in the way the Linux kernel's KVM subsystem handled PIT (Programmable Interval Timer) emulation. A guest user who has access to the PIT I/O ports could use this flaw to crash the host. (CVE-2014-3611) A flaw was found in the way OpenSSL handled fragmented handshake packets. A man-in-the-middle attacker could use this flaw to force a TLS/SSL server using OpenSSL to use TLS 1.0, even if both the client and the server supported newer protocol versions. (CVE-2014-3511) A memory leak flaw was found in the way an OpenSSL handled failed session ticket integrity checks. A remote attacker could exhaust all available memory of an SSL/TLS or DTLS server by sending a large number of invalid session tickets to that server. (CVE-2014-3567) It was found that the Linux kernel's KVM subsystem did not handle the VM exits gracefully for the invept (Invalidate Translations Derived from EPT) and invvpid (Invalidate Translations Based on VPID) instructions. On hosts with an Intel processor and invept/invppid VM exit support, an unprivileged guest user could use these instructions to crash the guest. (CVE-2014-3645, CVE-2014-3646) Red Hat would like to thank Qualys for reporting the CVE-2015-0235 issue, Lars Bull of Google for reporting the CVE-2014-3611 issue, and the Advanced Threat Research team at Intel Security for reporting the CVE-2014-3645 and CVE-2014-3646 issues. Users of the Red Hat Enterprise Virtualization Hypervisor are advised to upgrade to this updated package.
    last seen 2019-02-21
    modified 2018-11-10
    plugin id 81200
    published 2015-02-06
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=81200
    title RHEL 6 : rhev-hypervisor6 (RHSA-2015:0126) (GHOST)
  • NASL family Fedora Local Security Checks
    NASL id FEDORA_2014-14068.NASL
    description The 3.14.23 stable update contains a number of important fixes across the tree. Various security fixes for KVM and SCTP Note that Tenable Network Security has extracted the preceding description block directly from the Fedora security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen 2019-02-21
    modified 2015-10-19
    plugin id 79258
    published 2014-11-17
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=79258
    title Fedora 19 : kernel-3.14.23-100.fc19 (2014-14068)
  • NASL family Red Hat Local Security Checks
    NASL id REDHAT-RHSA-2014-1843.NASL
    description Updated kernel packages that fix multiple security issues and several bugs are now available for Red Hat Enterprise Linux 6. Red Hat Product Security has rated this update as having Important security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. The kernel packages contain the Linux kernel, the core of any Linux operating system. * A race condition flaw was found in the way the Linux kernel's KVM subsystem handled PIT (Programmable Interval Timer) emulation. A guest user who has access to the PIT I/O ports could use this flaw to crash the host. (CVE-2014-3611, Important) * A memory corruption flaw was found in the way the USB ConnectTech WhiteHEAT serial driver processed completion commands sent via USB Request Blocks buffers. An attacker with physical access to the system could use this flaw to crash the system or, potentially, escalate their privileges on the system. (CVE-2014-3185, Moderate) * It was found that the Linux kernel's KVM subsystem did not handle the VM exits gracefully for the invept (Invalidate Translations Derived from EPT) and invvpid (Invalidate Translations Based on VPID) instructions. On hosts with an Intel processor and invept/invppid VM exit support, an unprivileged guest user could use these instructions to crash the guest. (CVE-2014-3645, CVE-2014-3646, Moderate) Red Hat would like to thank Lars Bull of Google for reporting CVE-2014-3611, and the Advanced Threat Research team at Intel Security for reporting CVE-2014-3645 and CVE-2014-3646. This update also fixes the following bugs : * This update fixes several race conditions between PCI error recovery callbacks and potential calls of the ifup and ifdown commands in the tg3 driver. When triggered, these race conditions could cause a kernel crash. (BZ#1142570) * Previously, GFS2 failed to unmount a sub-mounted GFS2 file system if its parent was also a GFS2 file system. This problem has been fixed by adding the appropriate d_op->d_hash() routine call for the last component of the mount point path in the path name lookup mechanism code (namei). (BZ#1145193) * Due to previous changes in the virtio-net driver, a Red Hat Enterprise Linux 6.6 guest was unable to boot with the 'mgr_rxbuf=off' option specified. This was caused by providing the page_to_skb() function with an incorrect packet length in the driver's Rx path. This problem has been fixed and the guest in the described scenario can now boot successfully. (BZ#1148693) * When using one of the newer IPSec Authentication Header (AH) algorithms with Openswan, a kernel panic could occur. This happened because the maximum truncated ICV length was too small. To fix this problem, the MAX_AH_AUTH_LEN parameter has been set to 64. (BZ#1149083) * A bug in the IPMI driver caused the kernel to panic when an IPMI interface was removed using the hotmod script. The IPMI driver has been fixed to properly clean the relevant data when removing an IPMI interface. (BZ#1149578) * Due to a bug in the IPMI driver, the kernel could panic when adding an IPMI interface that was previously removed using the hotmod script. This update fixes this bug by ensuring that the relevant shadow structure is initialized at the right time. (BZ#1149580) All kernel users are advised to upgrade to these updated packages, which contain backported patches to correct these issues. The system must be rebooted for this update to take effect.
    last seen 2019-02-21
    modified 2018-11-26
    plugin id 79206
    published 2014-11-12
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=79206
    title RHEL 6 : kernel (RHSA-2014:1843)
  • NASL family Ubuntu Local Security Checks
    NASL id UBUNTU_USN-2417-1.NASL
    description Nadav Amit reported that the KVM (Kernel Virtual Machine) mishandles noncanonical addresses when emulating instructions that change the rip (Instruction Pointer). A guest user with access to I/O or the MMIO can use this flaw to cause a denial of service (system crash) of the guest. (CVE-2014-3647) A flaw was discovered with the handling of the invept instruction in the KVM (Kernel Virtual Machine) subsystem of the Linux kernel. An unprivileged guest user could exploit this flaw to cause a denial of service (system crash) on the guest. (CVE-2014-3646) A flaw was discovered with invept instruction support when using nested EPT in the KVM (Kernel Virtual Machine). An unprivileged guest user could exploit this flaw to cause a denial of service (system crash) on the guest. (CVE-2014-3645) Lars Bull reported a race condition in the PIT (programmable interrupt timer) emulation in the KVM (Kernel Virtual Machine) subsystem of the Linux kernel. A local guest user with access to PIT i/o ports could exploit this flaw to cause a denial of service (crash) on the host. (CVE-2014-3611) Lars Bull and Nadav Amit reported a flaw in how KVM (the Kernel Virtual Machine) handles noncanonical writes to certain MSR registers. A privileged guest user can exploit this flaw to cause a denial of service (kernel panic) on the host. (CVE-2014-3610) A flaw in the handling of malformed ASCONF chunks by SCTP (Stream Control Transmission Protocol) implementation in the Linux kernel was discovered. A remote attacker could exploit this flaw to cause a denial of service (system crash). (CVE-2014-3673) A flaw in the handling of duplicate ASCONF chunks by SCTP (Stream Control Transmission Protocol) implementation in the Linux kernel was discovered. A remote attacker could exploit this flaw to cause a denial of service (panic). (CVE-2014-3687) It was discovered that excessive queuing by SCTP (Stream Control Transmission Protocol) implementation in the Linux kernel can cause memory pressure. A remote attacker could exploit this flaw to cause a denial of service. (CVE-2014-3688) A flaw was discovered in how the Linux kernel's KVM (Kernel Virtual Machine) subsystem handles the CR4 control register at VM entry on Intel processors. A local host OS user can exploit this to cause a denial of service (kill arbitrary processes, or system disruption) by leveraging /dev/kvm access. (CVE-2014-3690) Don Bailey discovered a flaw in the LZO decompress algorithm used by the Linux kernel. An attacker could exploit this flaw to cause a denial of service (memory corruption or OOPS). (CVE-2014-4608) It was discovered the Linux kernel's implementation of IPv6 did not properly validate arguments in the ipv6_select_ident function. A local user could exploit this flaw to cause a denial of service (system crash) by leveraging tun or macvtap device access. (CVE-2014-7207) Andy Lutomirski discovered that the Linux kernel was not checking the CAP_SYS_ADMIN when remounting filesystems to read-only. A local user could exploit this flaw to cause a denial of service (loss of writability). (CVE-2014-7975). Note that Tenable Network Security has extracted the preceding description block directly from the Ubuntu security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen 2019-02-21
    modified 2018-12-01
    plugin id 79433
    published 2014-11-25
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=79433
    title Ubuntu 12.04 LTS : linux vulnerabilities (USN-2417-1)
  • NASL family Oracle Linux Local Security Checks
    NASL id ORACLELINUX_ELSA-2014-1843.NASL
    description From Red Hat Security Advisory 2014:1843 : Updated kernel packages that fix multiple security issues and several bugs are now available for Red Hat Enterprise Linux 6. Red Hat Product Security has rated this update as having Important security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. The kernel packages contain the Linux kernel, the core of any Linux operating system. * A race condition flaw was found in the way the Linux kernel's KVM subsystem handled PIT (Programmable Interval Timer) emulation. A guest user who has access to the PIT I/O ports could use this flaw to crash the host. (CVE-2014-3611, Important) * A memory corruption flaw was found in the way the USB ConnectTech WhiteHEAT serial driver processed completion commands sent via USB Request Blocks buffers. An attacker with physical access to the system could use this flaw to crash the system or, potentially, escalate their privileges on the system. (CVE-2014-3185, Moderate) * It was found that the Linux kernel's KVM subsystem did not handle the VM exits gracefully for the invept (Invalidate Translations Derived from EPT) and invvpid (Invalidate Translations Based on VPID) instructions. On hosts with an Intel processor and invept/invppid VM exit support, an unprivileged guest user could use these instructions to crash the guest. (CVE-2014-3645, CVE-2014-3646, Moderate) Red Hat would like to thank Lars Bull of Google for reporting CVE-2014-3611, and the Advanced Threat Research team at Intel Security for reporting CVE-2014-3645 and CVE-2014-3646. This update also fixes the following bugs : * This update fixes several race conditions between PCI error recovery callbacks and potential calls of the ifup and ifdown commands in the tg3 driver. When triggered, these race conditions could cause a kernel crash. (BZ#1142570) * Previously, GFS2 failed to unmount a sub-mounted GFS2 file system if its parent was also a GFS2 file system. This problem has been fixed by adding the appropriate d_op->d_hash() routine call for the last component of the mount point path in the path name lookup mechanism code (namei). (BZ#1145193) * Due to previous changes in the virtio-net driver, a Red Hat Enterprise Linux 6.6 guest was unable to boot with the 'mgr_rxbuf=off' option specified. This was caused by providing the page_to_skb() function with an incorrect packet length in the driver's Rx path. This problem has been fixed and the guest in the described scenario can now boot successfully. (BZ#1148693) * When using one of the newer IPSec Authentication Header (AH) algorithms with Openswan, a kernel panic could occur. This happened because the maximum truncated ICV length was too small. To fix this problem, the MAX_AH_AUTH_LEN parameter has been set to 64. (BZ#1149083) * A bug in the IPMI driver caused the kernel to panic when an IPMI interface was removed using the hotmod script. The IPMI driver has been fixed to properly clean the relevant data when removing an IPMI interface. (BZ#1149578) * Due to a bug in the IPMI driver, the kernel could panic when adding an IPMI interface that was previously removed using the hotmod script. This update fixes this bug by ensuring that the relevant shadow structure is initialized at the right time. (BZ#1149580) All kernel users are advised to upgrade to these updated packages, which contain backported patches to correct these issues. The system must be rebooted for this update to take effect.
    last seen 2019-02-21
    modified 2018-07-18
    plugin id 79201
    published 2014-11-12
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=79201
    title Oracle Linux 6 : kernel (ELSA-2014-1843)
  • NASL family CentOS Local Security Checks
    NASL id CENTOS_RHSA-2014-1724.NASL
    description Updated kernel packages that fix several security issues and bugs are now available for Red Hat Enterprise Linux 7. Red Hat Product Security has rated this update as having Important security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. The kernel packages contain the Linux kernel, the core of any Linux operating system. Security fixes : * A race condition flaw was found in the way the Linux kernel's KVM subsystem handled PIT (Programmable Interval Timer) emulation. A guest user who has access to the PIT I/O ports could use this flaw to crash the host. (CVE-2014-3611, Important) * A NULL pointer dereference flaw was found in the way the Linux kernel's Stream Control Transmission Protocol (SCTP) implementation handled simultaneous connections between the same hosts. A remote attacker could use this flaw to crash the system. (CVE-2014-5077, Important) * It was found that the Linux kernel's KVM subsystem did not handle the VM exits gracefully for the invept (Invalidate Translations Derived from EPT) and invvpid (Invalidate Translations Based on VPID) instructions. On hosts with an Intel processor and invept/invppid VM exit support, an unprivileged guest user could use these instructions to crash the guest. (CVE-2014-3645, CVE-2014-3646, Moderate) * A use-after-free flaw was found in the way the Linux kernel's Advanced Linux Sound Architecture (ALSA) implementation handled user controls. A local, privileged user could use this flaw to crash the system. (CVE-2014-4653, Moderate) Red Hat would like to thank Lars Bull of Google for reporting CVE-2014-3611, and the Advanced Threat Research team at Intel Security for reporting CVE-2014-3645 and CVE-2014-3646. Bug fixes : * A known issue that could prevent Chelsio adapters using the cxgb4 driver from being initialized on IBM POWER8 systems has been fixed. These adapters can now be used on IBM POWER8 systems as expected. (BZ#1130548) * When bringing a hot-added CPU online, the kernel did not initialize a CPU mask properly, which could result in a kernel panic. This update corrects the bug by ensuring that the CPU mask is properly initialized and the correct NUMA node selected. (BZ#1134715) * The kernel could fail to bring a CPU online if the hardware supported both, the acpi-cpufreq and intel_pstate modules. This update ensures that the acpi-cpufreq module is not loaded in the intel_pstate module is loaded. (BZ#1134716) * Due to a bug in the time accounting of the kernel scheduler, a divide error could occur when hot adding a CPU. To fix this problem, the kernel scheduler time accounting has been reworked. (BZ#1134717) * The kernel did not handle exceptions caused by an invalid floating point control (FPC) register, resulting in a kernel oops. This problem has been fixed by placing the label to handle these exceptions to the correct place in the code. (BZ#1138733) * A previous change to the kernel for the PowerPC architecture changed implementation of the compat_sys_sendfile() function. Consequently, the 64-bit sendfile() system call stopped working for files larger than 2 GB on PowerPC. This update restores previous behavior of sendfile() on PowerPC, and it again process files bigger than 2 GB as expected. (BZ#1139126) * Previously, the kernel scheduler could schedule a CPU topology update even though the topology did not change. This could negatively affect the CPU load balancing, cause degradation of the system performance, and eventually result in a kernel oops. This problem has been fixed by skipping the CPU topology update if the topology has not actually changed. (BZ#1140300) * Previously, recovery of a double-degraded RAID6 array could, under certain circumstances, result in data corruption. This could happen because the md driver was using an optimization that is safe to use only for single-degraded arrays. This update ensures that this optimization is skipped during the recovery of double-degraded RAID6 arrays. (BZ#1143850) All kernel users are advised to upgrade to these updated packages, which contain backported patches to correct these issues. The system must be rebooted for this update to take effect.
    last seen 2019-02-21
    modified 2018-11-10
    plugin id 78702
    published 2014-10-29
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=78702
    title CentOS 7 : kernel (CESA-2014:1724)
  • NASL family Debian Local Security Checks
    NASL id DEBIAN_DSA-3060.NASL
    description Several vulnerabilities have been discovered in the Linux kernel that may lead to a denial of service : - CVE-2014-3610 Lars Bull of Google and Nadav Amit reported a flaw in how KVM handles noncanonical writes to certain MSR registers. A privileged guest user can exploit this flaw to cause a denial of service (kernel panic) on the host. - CVE-2014-3611 Lars Bull of Google reported a race condition in the PIT emulation code in KVM. A local guest user with access to PIT i/o ports could exploit this flaw to cause a denial of service (crash) on the host. - CVE-2014-3645/ CVE-2014-3646 The Advanced Threat Research team at Intel Security discovered that the KVM subsystem did not handle the VM exits gracefully for the invept (Invalidate Translations Derived from EPT) and invvpid (Invalidate Translations Based on VPID) instructions. On hosts with an Intel processor and invept/invppid VM exit support, an unprivileged guest user could use these instructions to crash the guest. - CVE-2014-3647 Nadav Amit reported that KVM mishandles noncanonical addresses when emulating instructions that change rip, potentially causing a failed VM-entry. A guest user with access to I/O or the MMIO can use this flaw to cause a denial of service (system crash) of the guest. - CVE-2014-3673 Liu Wei of Red Hat discovered a flaw in net/core/skbuff.c leading to a kernel panic when receiving malformed ASCONF chunks. A remote attacker could use this flaw to crash the system. - CVE-2014-3687 A flaw in the sctp stack was discovered leading to a kernel panic when receiving duplicate ASCONF chunks. A remote attacker could use this flaw to crash the system. - CVE-2014-3688 It was found that the sctp stack is prone to a remotely triggerable memory pressure issue caused by excessive queueing. A remote attacker could use this flaw to cause denial-of-service conditions on the system. - CVE-2014-3690 Andy Lutomirski discovered that incorrect register handling in KVM may lead to denial of service. - CVE-2014-7207 Several Debian developers reported an issue in the IPv6 networking subsystem. A local user with access to tun or macvtap devices, or a virtual machine connected to such a device, can cause a denial of service (system crash). This update includes a bug fix related to CVE-2014-7207 that disables UFO (UDP Fragmentation Offload) in the macvtap, tun, and virtio_net drivers. This will cause migration of a running VM from a host running an earlier kernel version to a host running this kernel version to fail, if the VM has been assigned a virtio network device. In order to migrate such a VM, it must be shut down first.
    last seen 2019-02-21
    modified 2018-11-10
    plugin id 78784
    published 2014-11-03
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=78784
    title Debian DSA-3060-1 : linux - security update
  • NASL family SuSE Local Security Checks
    NASL id SUSE_11_KERNEL-141202.NASL
    description The SUSE Linux Enterprise 11 Service Pack 3 kernel has been updated to fix various bugs and security issues. The following security bugs have been fixed : - The __request_module function in kernel/kmod.c in the Linux kernel before 3.4 did not set a certain killable attribute, which allowed local users to cause a denial of service (memory consumption) via a crafted application. (bnc#779488). (CVE-2012-4398) - drivers/hid/hid-zpff.c in the Human Interface Device (HID) subsystem in the Linux kernel through 3.11, when CONFIG_HID_ZEROPLUS is enabled, allowed physically proximate attackers to cause a denial of service (heap-based out-of-bounds write) via a crafted device. (bnc#835839). (CVE-2013-2889) - The Human Interface Device (HID) subsystem in the Linux kernel through 3.11, when CONFIG_LOGITECH_FF, CONFIG_LOGIG940_FF, or CONFIG_LOGIWHEELS_FF is enabled, allowed physically proximate attackers to cause a denial of service (heap-based out-of-bounds write) via a crafted device, related to (1) drivers/hid/hid-lgff.c, (2) drivers/hid/hid-lg3ff.c, and (3) drivers/hid/hid-lg4ff.c. (bnc#835839). (CVE-2013-2893) - Multiple array index errors in drivers/hid/hid-multitouch.c in the Human Interface Device (HID) subsystem in the Linux kernel through 3.11, when CONFIG_HID_MULTITOUCH is enabled, allowed physically proximate attackers to cause a denial of service (heap memory corruption, or NULL pointer dereference and OOPS) via a crafted device. (bnc#835839). (CVE-2013-2897) - drivers/hid/hid-picolcd_core.c in the Human Interface Device (HID) subsystem in the Linux kernel through 3.11, when CONFIG_HID_PICOLCD is enabled, allowed physically proximate attackers to cause a denial of service (NULL pointer dereference and OOPS) via a crafted device. (bnc#835839). (CVE-2013-2899) - The Linux kernel before 3.12.4 updates certain length values before ensuring that associated data structures have been initialized, which allowed local users to obtain sensitive information from kernel stack memory via a (1) recvfrom, (2) recvmmsg, or (3) recvmsg system call, related to net/ipv4/ping.c, net/ipv4/raw.c, net/ipv4/udp.c, net/ipv6/raw.c, and net/ipv6/udp.c. (bnc#853040, bnc#857643). (CVE-2013-7263) - Multiple stack-based buffer overflows in the magicmouse_raw_event function in drivers/hid/hid-magicmouse.c in the Magic Mouse HID driver in the Linux kernel through 3.16.3 allowed physically proximate attackers to cause a denial of service (system crash) or possibly execute arbitrary code via a crafted device that provides a large amount of (1) EHCI or (2) XHCI data associated with an event. (bnc#896382). (CVE-2014-3181) - The report_fixup functions in the HID subsystem in the Linux kernel before 3.16.2 allowed physically proximate attackers to cause a denial of service (out-of-bounds write) via a crafted device that provides a small report descriptor, related to (1) drivers/hid/hid-cherry.c, (2) drivers/hid/hid-kye.c, (3) drivers/hid/hid-lg.c, (4) drivers/hid/hid-monterey.c, (5) drivers/hid/hid-petalynx.c, and (6) drivers/hid/hid-sunplus.c. (bnc#896390). (CVE-2014-3184) - Multiple buffer overflows in the command_port_read_callback function in drivers/usb/serial/whiteheat.c in the Whiteheat USB Serial Driver in the Linux kernel before 3.16.2 allowed physically proximate attackers to execute arbitrary code or cause a denial of service (memory corruption and system crash) via a crafted device that provides a large amount of (1) EHCI or (2) XHCI data associated with a bulk response. (bnc#896391). (CVE-2014-3185) - Buffer overflow in the picolcd_raw_event function in devices/hid/hid-picolcd_core.c in the PicoLCD HID device driver in the Linux kernel through 3.16.3, as used in Android on Nexus 7 devices, allowed physically proximate attackers to cause a denial of service (system crash) or possibly execute arbitrary code via a crafted device that sends a large report. (bnc#896392). (CVE-2014-3186) - The kvm_iommu_map_pages function in virt/kvm/iommu.c in the Linux kernel through 3.16.1 miscalculated the number of pages during the handling of a mapping failure, which allowed guest OS users to (1) cause a denial of service (host OS memory corruption) or possibly have unspecified other impact by triggering a large gfn value or (2) cause a denial of service (host OS memory consumption) by triggering a small gfn value that leads to permanently pinned pages. (bnc#892782). (CVE-2014-3601) - The WRMSR processing functionality in the KVM subsystem in the Linux kernel through 3.17.2 did not properly handle the writing of a non-canonical address to a model-specific register, which allowed guest OS users to cause a denial of service (host OS crash) by leveraging guest OS privileges, related to the wrmsr_interception function in arch/x86/kvm/svm.c and the handle_wrmsr function in arch/x86/kvm/vmx.c. (bnc#899192). (CVE-2014-3610) - arch/x86/kvm/vmx.c in the KVM subsystem in the Linux kernel through 3.17.2 did not have an exit handler for the INVVPID instruction, which allowed guest OS users to cause a denial of service (guest OS crash) via a crafted application. (bnc#899192). (CVE-2014-3646) - arch/x86/kvm/emulate.c in the KVM subsystem in the Linux kernel through 3.17.2 did not properly perform RIP changes, which allowed guest OS users to cause a denial of service (guest OS crash) via a crafted application. (bnc#899192). (CVE-2014-3647) - The SCTP implementation in the Linux kernel through 3.17.2 allowed remote attackers to cause a denial of service (system crash) via a malformed ASCONF chunk, related to net/sctp/sm_make_chunk.c and net/sctp/sm_statefuns.c. (bnc#902346, bnc#902349). (CVE-2014-3673) - arch/x86/kernel/entry_32.S in the Linux kernel through 3.15.1 on 32-bit x86 platforms, when syscall auditing is enabled and the sep CPU feature flag is set, allowed local users to cause a denial of service (OOPS and system crash) via an invalid syscall number, as demonstrated by number 1000. (bnc#883724). (CVE-2014-4508) - * DISPUTED * Multiple integer overflows in the lzo1x_decompress_safe function in lib/lzo/lzo1x_decompress_safe.c in the LZO decompressor in the Linux kernel before 3.15.2 allowed context-dependent attackers to cause a denial of service (memory corruption) via a crafted Literal Run. NOTE: the author of the LZO algorithms says: The Linux kernel is not affected; media hype. (bnc#883948). (CVE-2014-4608) - kernel/trace/trace_syscalls.c in the Linux kernel through 3.17.2 did not properly handle private syscall numbers during use of the ftrace subsystem, which allowed local users to gain privileges or cause a denial of service (invalid pointer dereference) via a crafted application. (bnc#904013). (CVE-2014-7826) - An SCTP server doing ASCONF would panic on malformed INIT ping-of-death. (bnc#905100). (CVE-2014-7841) - The ieee80211_fragment function in net/mac80211/tx.c in the Linux kernel before 3.13.5 did not properly maintain a certain tail pointer, which allowed remote attackers to obtain sensitive cleartext information by reading packets. (bnc#904700). (CVE-2014-8709) - A local user with write access could have used this flaw to crash the kernel or elevate privileges (bnc#905522). The following non-security bugs have been fixed:. (CVE-2014-8884) - Build the KOTD against the SP3 Update project - HID: fix kabi breakage. - NFS: Provide stub nfs_fscache_wait_on_invalidate() for when CONFIG_NFS_FSCACHE=n. - NFS: fix inverted test for delegation in nfs4_reclaim_open_state. (bnc#903331) - NFS: remove incorrect Lock reclaim failed! warning. (bnc#903331) - NFSv4: nfs4_open_done first must check that GETATTR decoded a file type. (bnc#899574) - PCI: pciehp: Clear Data Link Layer State Changed during init. (bnc#898295) - PCI: pciehp: Enable link state change notifications. (bnc#898295) - PCI: pciehp: Handle push button event asynchronously. (bnc#898295) - PCI: pciehp: Make check_link_active() non-static. (bnc#898295) - PCI: pciehp: Use link change notifications for hot-plug and removal. (bnc#898295) - PCI: pciehp: Use per-slot workqueues to avoid deadlock. (bnc#898295) - PCI: pciehp: Use symbolic constants, not hard-coded bitmask. (bnc#898295) - PM / hibernate: Iterate over set bits instead of PFNs in swsusp_free(). (bnc#860441) - be2net: Fix invocation of be_close() after be_clear(). (bnc#895468) - block: Fix bogus partition statistics reports. (bnc#885077 / bnc#891211) - block: Fix computation of merged request priority. - btrfs: Fix wrong device size when we are resizing the device. - btrfs: Return right extent when fiemap gives unaligned offset and len. - btrfs: abtract out range locking in clone ioctl(). - btrfs: always choose work from prio_head first. - btrfs: balance delayed inode updates. - btrfs: cache extent states in defrag code path. - btrfs: check file extent type before anything else. (bnc#897694) - btrfs: clone, do not create invalid hole extent map. - btrfs: correctly determine if blocks are shared in btrfs_compare_trees. - btrfs: do not bug_on if we try to cow a free space cache inode. - btrfs: ensure btrfs_prev_leaf does not miss 1 item. - btrfs: ensure readers see new data after a clone operation. - btrfs: fill_holes: Fix slot number passed to hole_mergeable() call. - btrfs: filter invalid arg for btrfs resize. - btrfs: fix EINVAL checks in btrfs_clone. - btrfs: fix EIO on reading file after ioctl clone works on it. - btrfs: fix a crash of clone with inline extents split. - btrfs: fix crash of compressed writes. (bnc#898375) - btrfs: fix crash when starting transaction. - btrfs: fix deadlock with nested trans handles. - btrfs: fix hang on error (such as ENOSPC) when writing extent pages. - btrfs: fix leaf corruption after __btrfs_drop_extents. - btrfs: fix race between balance recovery and root deletion. - btrfs: fix wrong extent mapping for DirectIO. - btrfs: handle a missing extent for the first file extent. - btrfs: limit delalloc pages outside of find_delalloc_range. (bnc#898375) - btrfs: read lock extent buffer while walking backrefs. - btrfs: remove unused wait queue in struct extent_buffer. - btrfs: replace EINVAL with ERANGE for resize when ULLONG_MAX. - btrfs: replace error code from btrfs_drop_extents. - btrfs: unlock extent and pages on error in cow_file_range. - btrfs: unlock inodes in correct order in clone ioctl. - btrfs_ioctl_clone: Move clone code into its own function. - cifs: delay super block destruction until all cifsFileInfo objects are gone. (bnc#903653) - drm/i915: Flush the PTEs after updating them before suspend. (bnc#901638) - drm/i915: Undo gtt scratch pte unmapping again. (bnc#901638) - ext3: return 32/64-bit dir name hash according to usage type. (bnc#898554) - ext4: return 32/64-bit dir name hash according to usage type. (bnc#898554) - fix: use after free of xfs workqueues. (bnc#894895) - fs: add new FMODE flags: FMODE_32bithash and FMODE_64bithash. (bnc#898554) - futex: Ensure get_futex_key_refs() always implies a barrier (bnc#851603 (futex scalability series)). - futex: Fix a race condition between REQUEUE_PI and task death (bnc#851603 (futex scalability series)). - ipv6: add support of peer address. (bnc#896415) - ipv6: fix a refcnt leak with peer addr. (bnc#896415) - megaraid_sas: Disable fastpath writes for non-RAID0. (bnc#897502) - mm: change __remove_pages() to call release_mem_region_adjustable(). (bnc#891790) - netxen: Fix link event handling. (bnc#873228) - netxen: fix link notification order. (bnc#873228) - nfsd: rename int access to int may_flags in nfsd_open(). (bnc#898554) - nfsd: vfs_llseek() with 32 or 64 bit offsets (hashes). (bnc#898554) - ocfs2: fix NULL pointer dereference in ocfs2_duplicate_clusters_by_page. (bnc#899843) - powerpc: Add smp_mb() to arch_spin_is_locked() (bsc#893758). - powerpc: Add smp_mb()s to arch_spin_unlock_wait() (bsc#893758). - powerpc: Add support for the optimised lockref implementation (bsc#893758). - powerpc: Implement arch_spin_is_locked() using arch_spin_value_unlocked() (bsc#893758). - refresh patches.xen/xen-blkback-multi-page-ring (bnc#897708)). - remove filesize checks for sync I/O journal commit. (bnc#800255) - resource: add __adjust_resource() for internal use. (bnc#891790) - resource: add release_mem_region_adjustable(). (bnc#891790) - revert PM / Hibernate: Iterate over set bits instead of PFNs in swsusp_free(). (bnc#860441) - rpm/mkspec: Generate specfiles according to Factory requirements. - rpm/mkspec: Generate a per-architecture per-package _constraints file - sched: Fix unreleased llc_shared_mask bit during CPU hotplug. (bnc#891368) - scsi_dh_alua: disable ALUA handling for non-disk devices. (bnc#876633) - usb: Do not re-read descriptors for wired devices in usb_authorize_device(). (bnc#904358) - usbback: Do not access request fields in shared ring more than once. - usbhid: add another mouse that needs QUIRK_ALWAYS_POLL. (bnc#888607) - vfs,proc: guarantee unique inodes in /proc. (bnc#868049) - x86, cpu hotplug: Fix stack frame warning incheck_irq_vectors_for_cpu_disable(). (bnc#887418) - x86, ioremap: Speed up check for RAM pages (Boot time optimisations (bnc#895387)). - x86: Add check for number of available vectors before CPU down. (bnc#887418) - x86: optimize resource lookups for ioremap (Boot time optimisations (bnc#895387)). - x86: use optimized ioresource lookup in ioremap function (Boot time optimisations (bnc#895387)). - xfs: Do not free EFIs before the EFDs are committed (bsc#755743). - xfs: Do not reference the EFI after it is freed (bsc#755743). - xfs: fix cil push sequence after log recovery (bsc#755743). - zcrypt: support for extended number of ap domains (bnc#894058, LTC#117041). - zcrypt: toleration of new crypto adapter hardware (bnc#894058, LTC#117041).
    last seen 2019-02-21
    modified 2014-12-26
    plugin id 80249
    published 2014-12-26
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=80249
    title SuSE 11.3 Security Update : Linux kernel (SAT Patch Numbers 10037 / 10040)
  • NASL family SuSE Local Security Checks
    NASL id SUSE_SU-2015-0481-1.NASL
    description The SUSE Linux Enterprise 11 Service Pack 2 LTSS kernel has been updated to fix security issues on kernels on the x86_64 architecture. The following security bugs have been fixed : - CVE-2012-4398: The __request_module function in kernel/kmod.c in the Linux kernel before 3.4 did not set a certain killable attribute, which allowed local users to cause a denial of service (memory consumption) via a crafted application (bnc#779488). - CVE-2013-2893: The Human Interface Device (HID) subsystem in the Linux kernel through 3.11, when CONFIG_LOGITECH_FF, CONFIG_LOGIG940_FF, or CONFIG_LOGIWHEELS_FF is enabled, allowed physically proximate attackers to cause a denial of service (heap-based out-of-bounds write) via a crafted device, related to (1) drivers/hid/hid-lgff.c, (2) drivers/hid/hid-lg3ff.c, and (3) drivers/hid/hid-lg4ff.c (bnc#835839). - CVE-2013-2897: Multiple array index errors in drivers/hid/hid-multitouch.c in the Human Interface Device (HID) subsystem in the Linux kernel through 3.11, when CONFIG_HID_MULTITOUCH is enabled, allowed physically proximate attackers to cause a denial of service (heap memory corruption, or NULL pointer dereference and OOPS) via a crafted device (bnc#835839). - CVE-2013-2899: drivers/hid/hid-picolcd_core.c in the Human Interface Device (HID) subsystem in the Linux kernel through 3.11, when CONFIG_HID_PICOLCD is enabled, allowed physically proximate attackers to cause a denial of service (NULL pointer dereference and OOPS) via a crafted device (bnc#835839). - CVE-2013-2929: The Linux kernel before 3.12.2 did not properly use the get_dumpable function, which allowed local users to bypass intended ptrace restrictions or obtain sensitive information from IA64 scratch registers via a crafted application, related to kernel/ptrace.c and arch/ia64/include/asm/processor.h (bnc#847652). - CVE-2013-7263: The Linux kernel before 3.12.4 updates certain length values before ensuring that associated data structures have been initialized, which allowed local users to obtain sensitive information from kernel stack memory via a (1) recvfrom, (2) recvmmsg, or (3) recvmsg system call, related to net/ipv4/ping.c, net/ipv4/raw.c, net/ipv4/udp.c, net/ipv6/raw.c, and net/ipv6/udp.c (bnc#857643). - CVE-2014-0131: Use-after-free vulnerability in the skb_segment function in net/core/skbuff.c in the Linux kernel through 3.13.6 allowed attackers to obtain sensitive information from kernel memory by leveraging the absence of a certain orphaning operation (bnc#867723). - CVE-2014-0181: The Netlink implementation in the Linux kernel through 3.14.1 did not provide a mechanism for authorizing socket operations based on the opener of a socket, which allowed local users to bypass intended access restrictions and modify network configurations by using a Netlink socket for the (1) stdout or (2) stderr of a setuid program (bnc#875051). - CVE-2014-2309: The ip6_route_add function in net/ipv6/route.c in the Linux kernel through 3.13.6 did not properly count the addition of routes, which allowed remote attackers to cause a denial of service (memory consumption) via a flood of ICMPv6 Router Advertisement packets (bnc#867531). - CVE-2014-3181: Multiple stack-based buffer overflows in the magicmouse_raw_event function in drivers/hid/hid-magicmouse.c in the Magic Mouse HID driver in the Linux kernel through 3.16.3 allowed physically proximate attackers to cause a denial of service (system crash) or possibly execute arbitrary code via a crafted device that provides a large amount of (1) EHCI or (2) XHCI data associated with an event (bnc#896382). - CVE-2014-3184: The report_fixup functions in the HID subsystem in the Linux kernel before 3.16.2 might have allowed physically proximate attackers to cause a denial of service (out-of-bounds write) via a crafted device that provides a small report descriptor, related to (1) drivers/hid/hid-cherry.c, (2) drivers/hid/hid-kye.c, (3) drivers/hid/hid-lg.c, (4) drivers/hid/hid-monterey.c, (5) drivers/hid/hid-petalynx.c, and (6) drivers/hid/hid-sunplus.c (bnc#896390). - CVE-2014-3185: Multiple buffer overflows in the command_port_read_callback function in drivers/usb/serial/whiteheat.c in the Whiteheat USB Serial Driver in the Linux kernel before 3.16.2 allowed physically proximate attackers to execute arbitrary code or cause a denial of service (memory corruption and system crash) via a crafted device that provides a large amount of (1) EHCI or (2) XHCI data associated with a bulk response (bnc#896391). - CVE-2014-3186: Buffer overflow in the picolcd_raw_event function in devices/hid/hid-picolcd_core.c in the PicoLCD HID device driver in the Linux kernel through 3.16.3, as used in Android on Nexus 7 devices, allowed physically proximate attackers to cause a denial of service (system crash) or possibly execute arbitrary code via a crafted device that sends a large report (bnc#896392). - CVE-2014-3601: The kvm_iommu_map_pages function in virt/kvm/iommu.c in the Linux kernel through 3.16.1 miscalculates the number of pages during the handling of a mapping failure, which allowed guest OS users to (1) cause a denial of service (host OS memory corruption) or possibly have unspecified other impact by triggering a large gfn value or (2) cause a denial of service (host OS memory consumption) by triggering a small gfn value that leads to permanently pinned pages (bnc#892782). - CVE-2014-3610: The WRMSR processing functionality in the KVM subsystem in the Linux kernel through 3.17.2 did not properly handle the writing of a non-canonical address to a model-specific register, which allowed guest OS users to cause a denial of service (host OS crash) by leveraging guest OS privileges, related to the wrmsr_interception function in arch/x86/kvm/svm.c and the handle_wrmsr function in arch/x86/kvm/vmx.c (bnc#899192). - CVE-2014-3646: arch/x86/kvm/vmx.c in the KVM subsystem in the Linux kernel through 3.17.2 did not have an exit handler for the INVVPID instruction, which allowed guest OS users to cause a denial of service (guest OS crash) via a crafted application (bnc#899192). - CVE-2014-3647: arch/x86/kvm/emulate.c in the KVM subsystem in the Linux kernel through 3.17.2 did not properly perform RIP changes, which allowed guest OS users to cause a denial of service (guest OS crash) via a crafted application (bnc#899192). - CVE-2014-3673: The SCTP implementation in the Linux kernel through 3.17.2 allowed remote attackers to cause a denial of service (system crash) via a malformed ASCONF chunk, related to net/sctp/sm_make_chunk.c and net/sctp/sm_statefuns.c (bnc#902346). - CVE-2014-3687: The sctp_assoc_lookup_asconf_ack function in net/sctp/associola.c in the SCTP implementation in the Linux kernel through 3.17.2 allowed remote attackers to cause a denial of service (panic) via duplicate ASCONF chunks that trigger an incorrect uncork within the side-effect interpreter (bnc#902349). - CVE-2014-3688: The SCTP implementation in the Linux kernel before 3.17.4 allowed remote attackers to cause a denial of service (memory consumption) by triggering a large number of chunks in an associations output queue, as demonstrated by ASCONF probes, related to net/sctp/inqueue.c and net/sctp/sm_statefuns.c (bnc#902351). - CVE-2014-3690: arch/x86/kvm/vmx.c in the KVM subsystem in the Linux kernel before 3.17.2 on Intel processors did not ensure that the value in the CR4 control register remains the same after a VM entry, which allowed host OS users to kill arbitrary processes or cause a denial of service (system disruption) by leveraging /dev/kvm access, as demonstrated by PR_SET_TSC prctl calls within a modified copy of QEMU (bnc#902232). - CVE-2014-4608: Multiple integer overflows in the lzo1x_decompress_safe function in lib/lzo/lzo1x_decompress_safe.c in the LZO decompressor in the Linux kernel before 3.15.2 allowed context-dependent attackers to cause a denial of service (memory corruption) via a crafted Literal Run (bnc#883948). - CVE-2014-4943: The PPPoL2TP feature in net/l2tp/l2tp_ppp.c in the Linux kernel through 3.15.6 allowed local users to gain privileges by leveraging data-structure differences between an l2tp socket and an inet socket (bnc#887082). - CVE-2014-5471: Stack consumption vulnerability in the parse_rock_ridge_inode_internal function in fs/isofs/rock.c in the Linux kernel through 3.16.1 allowed local users to cause a denial of service (uncontrolled recursion, and system crash or reboot) via a crafted iso9660 image with a CL entry referring to a directory entry that has a CL entry (bnc#892490). - CVE-2014-5472: The parse_rock_ridge_inode_internal function in fs/isofs/rock.c in the Linux kernel through 3.16.1 allowed local users to cause a denial of service (unkillable mount process) via a crafted iso9660 image with a self-referential CL entry (bnc#892490). - CVE-2014-7826: kernel/trace/trace_syscalls.c in the Linux kernel through 3.17.2 did not properly handle private syscall numbers during use of the ftrace subsystem, which allowed local users to gain privileges or cause a denial of service (invalid pointer dereference) via a crafted application (bnc#904013). - CVE-2014-7841: The sctp_process_param function in net/sctp/sm_make_chunk.c in the SCTP implementation in the Linux kernel before 3.17.4, when ASCONF is used, allowed remote attackers to cause a denial of service (NULL pointer dereference and system crash) via a malformed INIT chunk (bnc#905100). - CVE-2014-7842: Race condition in arch/x86/kvm/x86.c in the Linux kernel before 3.17.4 allowed guest OS users to cause a denial of service (guest OS crash) via a crafted application that performs an MMIO transaction or a PIO transaction to trigger a guest userspace emulation error report, a similar issue to CVE-2010-5313 (bnc#905312). - CVE-2014-8134: The paravirt_ops_setup function in arch/x86/kernel/kvm.c in the Linux kernel through 3.18 uses an improper paravirt_enabled setting for KVM guest kernels, which made it easier for guest OS users to bypass the ASLR protection mechanism via a crafted application that reads a 16-bit value (bnc#909078). - CVE-2014-8369: The kvm_iommu_map_pages function in virt/kvm/iommu.c in the Linux kernel through 3.17.2 miscalculates the number of pages during the handling of a mapping failure, which allowed guest OS users to cause a denial of service (host OS page unpinning) or possibly have unspecified other impact by leveraging guest OS privileges. NOTE: this vulnerability exists because of an incorrect fix for CVE-2014-3601 (bnc#902675). - CVE-2014-8559: The d_walk function in fs/dcache.c in the Linux kernel through 3.17.2 did not properly maintain the semantics of rename_lock, which allowed local users to cause a denial of service (deadlock and system hang) via a crafted application (bnc#903640). - CVE-2014-8709: The ieee80211_fragment function in net/mac80211/tx.c in the Linux kernel before 3.13.5 did not properly maintain a certain tail pointer, which allowed remote attackers to obtain sensitive cleartext information by reading packets (bnc#904700). - CVE-2014-9584: The parse_rock_ridge_inode_internal function in fs/isofs/rock.c in the Linux kernel before 3.18.2 did not validate a length value in the Extensions Reference (ER) System Use Field, which allowed local users to obtain sensitive information from kernel memory via a crafted iso9660 image (bnc#912654). - CVE-2014-9585: The vdso_addr function in arch/x86/vdso/vma.c in the Linux kernel through 3.18.2 did not properly choose memory locations for the vDSO area, which made it easier for local users to bypass the ASLR protection mechanism by guessing a location at the end of a PMD (bnc#912705). The update package also includes non-security fixes. See advisory for details. Note that Tenable Network Security has extracted the preceding description block directly from the SUSE security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen 2019-02-21
    modified 2018-11-29
    plugin id 83696
    published 2015-05-20
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=83696
    title SUSE SLES11 Security Update : kernel (SUSE-SU-2015:0481-1)
  • NASL family Oracle Linux Local Security Checks
    NASL id ORACLELINUX_ELSA-2014-3084.NASL
    description Description of changes: kernel-uek [3.8.13-44.1.4.el7uek] - USB: whiteheat: Added bounds checking for bulk command response (James Forshaw) [Orabug: 19849334] {CVE-2014-3185} - HID: fix a couple of off-by-ones (Jiri Kosina) [Orabug: 19849317] {CVE-2014-3181} - kvm: vmx: handle invvpid vm exit gracefully (Petr Matousek) [Orabug: 19906300] {CVE-2014-3646} - nEPT: Nested INVEPT (Nadav Har'El) [Orabug: 19906267] {CVE-2014-3645} - KVM: x86: Improve thread safety in pit (Andy Honig) [Orabug: 19905686] {CVE-2014-3611}
    last seen 2019-02-21
    modified 2015-12-01
    plugin id 78756
    published 2014-10-31
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=78756
    title Oracle Linux 6 / 7 : Unbreakable Enterprise kernel (ELSA-2014-3084)
  • NASL family Red Hat Local Security Checks
    NASL id REDHAT-RHSA-2014-1724.NASL
    description Updated kernel packages that fix several security issues and bugs are now available for Red Hat Enterprise Linux 7. Red Hat Product Security has rated this update as having Important security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. The kernel packages contain the Linux kernel, the core of any Linux operating system. Security fixes : * A race condition flaw was found in the way the Linux kernel's KVM subsystem handled PIT (Programmable Interval Timer) emulation. A guest user who has access to the PIT I/O ports could use this flaw to crash the host. (CVE-2014-3611, Important) * A NULL pointer dereference flaw was found in the way the Linux kernel's Stream Control Transmission Protocol (SCTP) implementation handled simultaneous connections between the same hosts. A remote attacker could use this flaw to crash the system. (CVE-2014-5077, Important) * It was found that the Linux kernel's KVM subsystem did not handle the VM exits gracefully for the invept (Invalidate Translations Derived from EPT) and invvpid (Invalidate Translations Based on VPID) instructions. On hosts with an Intel processor and invept/invppid VM exit support, an unprivileged guest user could use these instructions to crash the guest. (CVE-2014-3645, CVE-2014-3646, Moderate) * A use-after-free flaw was found in the way the Linux kernel's Advanced Linux Sound Architecture (ALSA) implementation handled user controls. A local, privileged user could use this flaw to crash the system. (CVE-2014-4653, Moderate) Red Hat would like to thank Lars Bull of Google for reporting CVE-2014-3611, and the Advanced Threat Research team at Intel Security for reporting CVE-2014-3645 and CVE-2014-3646. Bug fixes : * A known issue that could prevent Chelsio adapters using the cxgb4 driver from being initialized on IBM POWER8 systems has been fixed. These adapters can now be used on IBM POWER8 systems as expected. (BZ#1130548) * When bringing a hot-added CPU online, the kernel did not initialize a CPU mask properly, which could result in a kernel panic. This update corrects the bug by ensuring that the CPU mask is properly initialized and the correct NUMA node selected. (BZ#1134715) * The kernel could fail to bring a CPU online if the hardware supported both, the acpi-cpufreq and intel_pstate modules. This update ensures that the acpi-cpufreq module is not loaded in the intel_pstate module is loaded. (BZ#1134716) * Due to a bug in the time accounting of the kernel scheduler, a divide error could occur when hot adding a CPU. To fix this problem, the kernel scheduler time accounting has been reworked. (BZ#1134717) * The kernel did not handle exceptions caused by an invalid floating point control (FPC) register, resulting in a kernel oops. This problem has been fixed by placing the label to handle these exceptions to the correct place in the code. (BZ#1138733) * A previous change to the kernel for the PowerPC architecture changed implementation of the compat_sys_sendfile() function. Consequently, the 64-bit sendfile() system call stopped working for files larger than 2 GB on PowerPC. This update restores previous behavior of sendfile() on PowerPC, and it again process files bigger than 2 GB as expected. (BZ#1139126) * Previously, the kernel scheduler could schedule a CPU topology update even though the topology did not change. This could negatively affect the CPU load balancing, cause degradation of the system performance, and eventually result in a kernel oops. This problem has been fixed by skipping the CPU topology update if the topology has not actually changed. (BZ#1140300) * Previously, recovery of a double-degraded RAID6 array could, under certain circumstances, result in data corruption. This could happen because the md driver was using an optimization that is safe to use only for single-degraded arrays. This update ensures that this optimization is skipped during the recovery of double-degraded RAID6 arrays. (BZ#1143850) All kernel users are advised to upgrade to these updated packages, which contain backported patches to correct these issues. The system must be rebooted for this update to take effect.
    last seen 2019-02-21
    modified 2018-11-10
    plugin id 78722
    published 2014-10-29
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=78722
    title RHEL 7 : kernel (RHSA-2014:1724)
  • NASL family Oracle Linux Local Security Checks
    NASL id ORACLELINUX_ELSA-2014-3096.NASL
    description The remote Oracle Linux host is missing a security update for the Unbreakable Enterprise kernel package(s).
    last seen 2019-02-21
    modified 2019-01-02
    plugin id 79735
    published 2014-12-05
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=79735
    title Oracle Linux 6 / 7 : Unbreakable Enterprise kernel (ELSA-2014-3096)
  • NASL family Fedora Local Security Checks
    NASL id FEDORA_2014-14126.NASL
    description Linux v3.17.2. A wide variety of fixes across the tree. Even more KVM CVE fixes CVE fixes for KVM and SCTP. Note that Tenable Network Security has extracted the preceding description block directly from the Fedora security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen 2019-02-21
    modified 2015-10-19
    plugin id 78814
    published 2014-11-03
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=78814
    title Fedora 21 : kernel-3.17.2-300.fc21 (2014-14126)
  • NASL family Mandriva Local Security Checks
    NASL id MANDRIVA_MDVSA-2014-230.NASL
    description Multiple vulnerabilities has been found and corrected in the Linux kernel : The WRMSR processing functionality in the KVM subsystem in the Linux kernel through 3.17.2 does not properly handle the writing of a non-canonical address to a model-specific register, which allows guest OS users to cause a denial of service (host OS crash) by leveraging guest OS privileges, related to the wrmsr_interception function in arch/x86/kvm/svm.c and the handle_wrmsr function in arch/x86/kvm/vmx.c (CVE-2014-3610). Race condition in the __kvm_migrate_pit_timer function in arch/x86/kvm/i8254.c in the KVM subsystem in the Linux kernel through 3.17.2 allows guest OS users to cause a denial of service (host OS crash) by leveraging incorrect PIT emulation (CVE-2014-3611). arch/x86/kvm/vmx.c in the KVM subsystem in the Linux kernel before 3.12 does not have an exit handler for the INVEPT instruction, which allows guest OS users to cause a denial of service (guest OS crash) via a crafted application (CVE-2014-3645). arch/x86/kvm/vmx.c in the KVM subsystem in the Linux kernel through 3.17.2 does not have an exit handler for the INVVPID instruction, which allows guest OS users to cause a denial of service (guest OS crash) via a crafted application (CVE-2014-3646). arch/x86/kvm/emulate.c in the KVM subsystem in the Linux kernel through 3.17.2 does not properly perform RIP changes, which allows guest OS users to cause a denial of service (guest OS crash) via a crafted application (CVE-2014-3647). The SCTP implementation in the Linux kernel through 3.17.2 allows remote attackers to cause a denial of service (system crash) via a malformed ASCONF chunk, related to net/sctp/sm_make_chunk.c and net/sctp/sm_statefuns.c (CVE-2014-3673). The sctp_assoc_lookup_asconf_ack function in net/sctp/associola.c in the SCTP implementation in the Linux kernel through 3.17.2 allows remote attackers to cause a denial of service (panic) via duplicate ASCONF chunks that trigger an incorrect uncork within the side-effect interpreter (CVE-2014-3687). arch/x86/kvm/vmx.c in the KVM subsystem in the Linux kernel before 3.17.2 on Intel processors does not ensure that the value in the CR4 control register remains the same after a VM entry, which allows host OS users to kill arbitrary processes or cause a denial of service (system disruption) by leveraging /dev/kvm access, as demonstrated by PR_SET_TSC prctl calls within a modified copy of QEMU (CVE-2014-3690). kernel/trace/trace_syscalls.c in the Linux kernel through 3.17.2 does not properly handle private syscall numbers during use of the perf subsystem, which allows local users to cause a denial of service (out-of-bounds read and OOPS) or bypass the ASLR protection mechanism via a crafted application (CVE-2014-7825). kernel/trace/trace_syscalls.c in the Linux kernel through 3.17.2 does not properly handle private syscall numbers during use of the ftrace subsystem, which allows local users to gain privileges or cause a denial of service (invalid pointer dereference) via a crafted application (CVE-2014-7826). The pivot_root implementation in fs/namespace.c in the Linux kernel through 3.17 does not properly interact with certain locations of a chroot directory, which allows local users to cause a denial of service (mount-tree loop) via . (dot) values in both arguments to the pivot_root system call (CVE-2014-7970). The kvm_iommu_map_pages function in virt/kvm/iommu.c in the Linux kernel through 3.17.2 miscalculates the number of pages during the handling of a mapping failure, which allows guest OS users to cause a denial of service (host OS page unpinning) or possibly have unspecified other impact by leveraging guest OS privileges. NOTE: this vulnerability exists because of an incorrect fix for CVE-2014-3601 (CVE-2014-8369). The updated packages provides a solution for these security issues.
    last seen 2019-02-21
    modified 2018-07-19
    plugin id 79610
    published 2014-11-28
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=79610
    title Mandriva Linux Security Advisory : kernel (MDVSA-2014:230)
  • NASL family Red Hat Local Security Checks
    NASL id REDHAT-RHSA-2015-0284.NASL
    description Updated kernel packages that fix multiple security issues and several bugs are now available for Red Hat Enterprise Linux 6.5 Extended Update Support. Red Hat Product Security has rated this update as having Important security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. The kernel packages contain the Linux kernel, the core of any Linux operating system. * A race condition flaw was found in the way the Linux kernel's KVM subsystem handled PIT (Programmable Interval Timer) emulation. A guest user who has access to the PIT I/O ports could use this flaw to crash the host. (CVE-2014-3611, Important) * A flaw was found in the way the Linux kernel's SCTP implementation validated INIT chunks when performing Address Configuration Change (ASCONF). A remote attacker could use this flaw to crash the system by sending a specially crafted SCTP packet to trigger a NULL pointer dereference on the system. (CVE-2014-7841, Important) * A flaw was found in the way the ipc_rcu_putref() function in the Linux kernel's IPC implementation handled reference counter decrementing. A local, unprivileged user could use this flaw to trigger an Out of Memory (OOM) condition and, potentially, crash the system. (CVE-2013-4483, Moderate) * A memory corruption flaw was found in the way the USB ConnectTech WhiteHEAT serial driver processed completion commands sent via USB Request Blocks buffers. An attacker with physical access to the system could use this flaw to crash the system or, potentially, escalate their privileges on the system. (CVE-2014-3185, Moderate) * It was found that the Linux kernel's KVM subsystem did not handle the VM exits gracefully for the invept (Invalidate Translations Derived from EPT) and invvpid (Invalidate Translations Based on VPID) instructions. On hosts with an Intel processor and invept/invppid VM exit support, an unprivileged guest user could use these instructions to crash the guest. (CVE-2014-3645, CVE-2014-3646, Moderate) * A flaw was found in the way the Linux kernel's netfilter subsystem handled generic protocol tracking. As demonstrated in the Stream Control Transmission Protocol (SCTP) case, a remote attacker could use this flaw to bypass intended iptables rule restrictions when the associated connection tracking module was not loaded on the system. (CVE-2014-8160, Moderate) Red Hat would like to thank Lars Bull of Google for reporting CVE-2014-3611, Vladimir Davydov (Parallels) for reporting CVE-2013-4483, and the Advanced Threat Research team at Intel Security for reporting CVE-2014-3645 and CVE-2014-3646. The CVE-2014-7841 issue was discovered by Liu Wei of Red Hat. Bug fixes : * When forwarding a packet, the iptables target TCPOPTSTRIP used the tcp_hdr() function to locate the option space. Consequently, TCPOPTSTRIP located the incorrect place in the packet, and therefore did not match options for stripping. TCPOPTSTRIP now uses the TCP header itself to locate the option space, and the options are now properly stripped. (BZ#1172026) * The ipset utility computed incorrect values of timeouts from an old IP set, and these values were then supplied to a new IP set. A resize on an IP set with a timeouts option enabled could then supply corrupted data from an old IP set. This bug has been fixed by properly reading timeout values from an old set before supplying them to a new set. (BZ#1172763) * Incorrect processing of errors from the BCM5719 LAN controller could result in incoming packets being dropped. Now, received errors are handled properly, and incoming packets are no longer randomly dropped. (BZ#1180405) * When the NVMe driver allocated a name-space queue, it was recognized as a request-based driver, whereas it was a BIO-based driver. While trying to access data during the loading of NVMe along with a request-based DM device, the system could terminate unexpectedly or become unresponsive. Now, NVMe does not set the QUEUE_FLAG_STACKABLE flag during the allocation of a name-space queue, and the system no longer attempts to insert a request into the queue, preventing a crash. (BZ#1180554) All kernel users are advised to upgrade to these updated packages, which contain backported patches to correct these issues. The system must be rebooted for this update to take effect.
    last seen 2019-02-21
    modified 2018-11-10
    plugin id 81624
    published 2015-03-05
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=81624
    title RHEL 6 : kernel (RHSA-2015:0284)
  • NASL family Fedora Local Security Checks
    NASL id FEDORA_2014-13773.NASL
    description More KVM CVE fixes. Note that Tenable Network Security has extracted the preceding description block directly from the Fedora security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen 2019-02-21
    modified 2015-10-19
    plugin id 78716
    published 2014-10-29
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=78716
    title Fedora 20 : kernel-3.16.6-203.fc20 (2014-13773)
  • NASL family Scientific Linux Local Security Checks
    NASL id SL_20141028_KERNEL_ON_SL7_X.NASL
    description Security fixes : - A race condition flaw was found in the way the Linux kernel's KVM subsystem handled PIT (Programmable Interval Timer) emulation. A guest user who has access to the PIT I/O ports could use this flaw to crash the host. (CVE-2014-3611, Important) - A NULL pointer dereference flaw was found in the way the Linux kernel's Stream Control Transmission Protocol (SCTP) implementation handled simultaneous connections between the same hosts. A remote attacker could use this flaw to crash the system. (CVE-2014-5077, Important) - It was found that the Linux kernel's KVM subsystem did not handle the VM exits gracefully for the invept (Invalidate Translations Derived from EPT) and invvpid (Invalidate Translations Based on VPID) instructions. On hosts with an Intel processor and invept/invppid VM exit support, an unprivileged guest user could use these instructions to crash the guest. (CVE-2014-3645, CVE-2014-3646, Moderate) - A use-after-free flaw was found in the way the Linux kernel's Advanced Linux Sound Architecture (ALSA) implementation handled user controls. A local, privileged user could use this flaw to crash the system. (CVE-2014-4653, Moderate) Bug fixes : - A known issue that could prevent Chelsio adapters using the cxgb4 driver from being initialized on IBM POWER8 systems has been fixed. These adapters can now be used on IBM POWER8 systems as expected. - When bringing a hot-added CPU online, the kernel did not initialize a CPU mask properly, which could result in a kernel panic. This update corrects the bug by ensuring that the CPU mask is properly initialized and the correct NUMA node selected. - The kernel could fail to bring a CPU online if the hardware supported both, the acpi-cpufreq and intel_pstate modules. This update ensures that the acpi-cpufreq module is not loaded in the intel_pstate module is loaded. - Due to a bug in the time accounting of the kernel scheduler, a divide error could occur when hot adding a CPU. To fix this problem, the kernel scheduler time accounting has been reworked. - The kernel did not handle exceptions caused by an invalid floating point control (FPC) register, resulting in a kernel oops. This problem has been fixed by placing the label to handle these exceptions to the correct place in the code. - A previous change to the kernel for the PowerPC architecture changed implementation of the compat_sys_sendfile() function. Consequently, the 64-bit sendfile() system call stopped working for files larger than 2 GB on PowerPC. This update restores previous behavior of sendfile() on PowerPC, and it again process files bigger than 2 GB as expected. - Previously, the kernel scheduler could schedule a CPU topology update even though the topology did not change. This could negatively affect the CPU load balancing, cause degradation of the system performance, and eventually result in a kernel oops. This problem has been fixed by skipping the CPU topology update if the topology has not actually changed. - Previously, recovery of a double-degraded RAID6 array could, under certain circumstances, result in data corruption. This could happen because the md driver was using an optimization that is safe to use only for single-degraded arrays. This update ensures that this optimization is skipped during the recovery of double-degraded RAID6 arrays. The system must be rebooted for this update to take effect.
    last seen 2019-02-21
    modified 2018-12-28
    plugin id 78851
    published 2014-11-04
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=78851
    title Scientific Linux Security Update : kernel on SL7.x x86_64
  • NASL family CentOS Local Security Checks
    NASL id CENTOS_RHSA-2014-1843.NASL
    description Updated kernel packages that fix multiple security issues and several bugs are now available for Red Hat Enterprise Linux 6. Red Hat Product Security has rated this update as having Important security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. The kernel packages contain the Linux kernel, the core of any Linux operating system. * A race condition flaw was found in the way the Linux kernel's KVM subsystem handled PIT (Programmable Interval Timer) emulation. A guest user who has access to the PIT I/O ports could use this flaw to crash the host. (CVE-2014-3611, Important) * A memory corruption flaw was found in the way the USB ConnectTech WhiteHEAT serial driver processed completion commands sent via USB Request Blocks buffers. An attacker with physical access to the system could use this flaw to crash the system or, potentially, escalate their privileges on the system. (CVE-2014-3185, Moderate) * It was found that the Linux kernel's KVM subsystem did not handle the VM exits gracefully for the invept (Invalidate Translations Derived from EPT) and invvpid (Invalidate Translations Based on VPID) instructions. On hosts with an Intel processor and invept/invppid VM exit support, an unprivileged guest user could use these instructions to crash the guest. (CVE-2014-3645, CVE-2014-3646, Moderate) Red Hat would like to thank Lars Bull of Google for reporting CVE-2014-3611, and the Advanced Threat Research team at Intel Security for reporting CVE-2014-3645 and CVE-2014-3646. This update also fixes the following bugs : * This update fixes several race conditions between PCI error recovery callbacks and potential calls of the ifup and ifdown commands in the tg3 driver. When triggered, these race conditions could cause a kernel crash. (BZ#1142570) * Previously, GFS2 failed to unmount a sub-mounted GFS2 file system if its parent was also a GFS2 file system. This problem has been fixed by adding the appropriate d_op->d_hash() routine call for the last component of the mount point path in the path name lookup mechanism code (namei). (BZ#1145193) * Due to previous changes in the virtio-net driver, a Red Hat Enterprise Linux 6.6 guest was unable to boot with the 'mgr_rxbuf=off' option specified. This was caused by providing the page_to_skb() function with an incorrect packet length in the driver's Rx path. This problem has been fixed and the guest in the described scenario can now boot successfully. (BZ#1148693) * When using one of the newer IPSec Authentication Header (AH) algorithms with Openswan, a kernel panic could occur. This happened because the maximum truncated ICV length was too small. To fix this problem, the MAX_AH_AUTH_LEN parameter has been set to 64. (BZ#1149083) * A bug in the IPMI driver caused the kernel to panic when an IPMI interface was removed using the hotmod script. The IPMI driver has been fixed to properly clean the relevant data when removing an IPMI interface. (BZ#1149578) * Due to a bug in the IPMI driver, the kernel could panic when adding an IPMI interface that was previously removed using the hotmod script. This update fixes this bug by ensuring that the relevant shadow structure is initialized at the right time. (BZ#1149580) All kernel users are advised to upgrade to these updated packages, which contain backported patches to correct these issues. The system must be rebooted for this update to take effect.
    last seen 2019-02-21
    modified 2018-11-10
    plugin id 79189
    published 2014-11-12
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=79189
    title CentOS 6 : kernel (CESA-2014:1843)
  • NASL family Oracle Linux Local Security Checks
    NASL id ORACLELINUX_ELSA-2014-1724.NASL
    description From Red Hat Security Advisory 2014:1724 : Updated kernel packages that fix several security issues and bugs are now available for Red Hat Enterprise Linux 7. Red Hat Product Security has rated this update as having Important security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. The kernel packages contain the Linux kernel, the core of any Linux operating system. Security fixes : * A race condition flaw was found in the way the Linux kernel's KVM subsystem handled PIT (Programmable Interval Timer) emulation. A guest user who has access to the PIT I/O ports could use this flaw to crash the host. (CVE-2014-3611, Important) * A NULL pointer dereference flaw was found in the way the Linux kernel's Stream Control Transmission Protocol (SCTP) implementation handled simultaneous connections between the same hosts. A remote attacker could use this flaw to crash the system. (CVE-2014-5077, Important) * It was found that the Linux kernel's KVM subsystem did not handle the VM exits gracefully for the invept (Invalidate Translations Derived from EPT) and invvpid (Invalidate Translations Based on VPID) instructions. On hosts with an Intel processor and invept/invppid VM exit support, an unprivileged guest user could use these instructions to crash the guest. (CVE-2014-3645, CVE-2014-3646, Moderate) * A use-after-free flaw was found in the way the Linux kernel's Advanced Linux Sound Architecture (ALSA) implementation handled user controls. A local, privileged user could use this flaw to crash the system. (CVE-2014-4653, Moderate) Red Hat would like to thank Lars Bull of Google for reporting CVE-2014-3611, and the Advanced Threat Research team at Intel Security for reporting CVE-2014-3645 and CVE-2014-3646. Bug fixes : * A known issue that could prevent Chelsio adapters using the cxgb4 driver from being initialized on IBM POWER8 systems has been fixed. These adapters can now be used on IBM POWER8 systems as expected. (BZ#1130548) * When bringing a hot-added CPU online, the kernel did not initialize a CPU mask properly, which could result in a kernel panic. This update corrects the bug by ensuring that the CPU mask is properly initialized and the correct NUMA node selected. (BZ#1134715) * The kernel could fail to bring a CPU online if the hardware supported both, the acpi-cpufreq and intel_pstate modules. This update ensures that the acpi-cpufreq module is not loaded in the intel_pstate module is loaded. (BZ#1134716) * Due to a bug in the time accounting of the kernel scheduler, a divide error could occur when hot adding a CPU. To fix this problem, the kernel scheduler time accounting has been reworked. (BZ#1134717) * The kernel did not handle exceptions caused by an invalid floating point control (FPC) register, resulting in a kernel oops. This problem has been fixed by placing the label to handle these exceptions to the correct place in the code. (BZ#1138733) * A previous change to the kernel for the PowerPC architecture changed implementation of the compat_sys_sendfile() function. Consequently, the 64-bit sendfile() system call stopped working for files larger than 2 GB on PowerPC. This update restores previous behavior of sendfile() on PowerPC, and it again process files bigger than 2 GB as expected. (BZ#1139126) * Previously, the kernel scheduler could schedule a CPU topology update even though the topology did not change. This could negatively affect the CPU load balancing, cause degradation of the system performance, and eventually result in a kernel oops. This problem has been fixed by skipping the CPU topology update if the topology has not actually changed. (BZ#1140300) * Previously, recovery of a double-degraded RAID6 array could, under certain circumstances, result in data corruption. This could happen because the md driver was using an optimization that is safe to use only for single-degraded arrays. This update ensures that this optimization is skipped during the recovery of double-degraded RAID6 arrays. (BZ#1143850) All kernel users are advised to upgrade to these updated packages, which contain backported patches to correct these issues. The system must be rebooted for this update to take effect.
    last seen 2019-02-21
    modified 2018-07-18
    plugin id 78721
    published 2014-10-29
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=78721
    title Oracle Linux 7 : kernel (ELSA-2014-1724)
  • NASL family Ubuntu Local Security Checks
    NASL id UBUNTU_USN-2394-1.NASL
    description Nadav Amit reported that the KVM (Kernel Virtual Machine) mishandles noncanonical addresses when emulating instructions that change the rip (Instruction Pointer). A guest user with access to I/O or the MMIO can use this flaw to cause a denial of service (system crash) of the guest. (CVE-2014-3647) A flaw was discovered with the handling of the invept instruction in the KVM (Kernel Virtual Machine) subsystem of the Linux kernel. An unprivileged guest user could exploit this flaw to cause a denial of service (system crash) on the guest. (CVE-2014-3646) Lars Bull reported a race condition in the PIT (programmable interrupt timer) emulation in the KVM (Kernel Virtual Machine) subsystem of the Linux kernel. A local guest user with access to PIT i/o ports could exploit this flaw to cause a denial of service (crash) on the host. (CVE-2014-3611) Lars Bull and Nadav Amit reported a flaw in how KVM (the Kernel Virtual Machine) handles noncanonical writes to certain MSR registers. A privileged guest user can exploit this flaw to cause a denial of service (kernel panic) on the host. (CVE-2014-3610) Raphael Geissert reported a NULL pointer dereference in the Linux kernel's CIFS client. A remote CIFS server could cause a denial of service (system crash) or possibly have other unspecified impact by deleting IPC$ share during resolution of DFS referrals. (CVE-2014-7145). Note that Tenable Network Security has extracted the preceding description block directly from the Ubuntu security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen 2019-02-21
    modified 2018-12-01
    plugin id 78764
    published 2014-10-31
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=78764
    title Ubuntu 12.04 LTS : linux-lts-trusty vulnerabilities (USN-2394-1)
  • NASL family F5 Networks Local Security Checks
    NASL id F5_BIGIP_SOL15912.NASL
    description CVE-2014-3185 Multiple buffer overflows in the command_port_read_callback function in drivers/usb/serial/whiteheat.c in the Whiteheat USB Serial Driver in the Linux kernel before 3.16.2 allow physically proximate attackers to execute arbitrary code or cause a denial of service (memory corruption and system crash) via a crafted device that provides a large amount of (1) EHCI or (2) XHCI data associated with a bulk response. CVE-2014-3611 Race condition in the __kvm_migrate_pit_timer function in arch/x86/kvm/i8254.c in the KVM subsystem in the Linux kernel through 3.17.2 allows guest OS users to cause a denial of service (host OS crash) by leveraging incorrect PIT emulation. CVE-2014-3645 arch/x86/kvm/vmx.c in the KVM subsystem in the Linux kernel before 3.12 does not have an exit handler for the INVEPT instruction, which allows guest OS users to cause a denial of service (guest OS crash) via a crafted application. CVE-2014-3646 arch/x86/kvm/vmx.c in the KVM subsystem in the Linux kernel through 3.17.2 does not have an exit handler for the INVVPID instruction, which allows guest OS users to cause a denial of service (guest OS crash) via a crafted application. Impact An attacker may be able to gain access to unauthorized information, perform unauthorized modification of data, or cause disruption of services. CVE-2014-3185 require physical access to the device. CVE-2014-3611, CVE-2014-3645, and CVE-2014-3646 are considered local, as they are exploitable only by an authenticated user.
    last seen 2019-02-21
    modified 2019-01-04
    plugin id 80059
    published 2014-12-17
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=80059
    title F5 Networks BIG-IP : Linux kernel driver vulnerabilities (K15912)
  • NASL family OracleVM Local Security Checks
    NASL id ORACLEVM_OVMSA-2017-0057.NASL
    description The remote OracleVM system is missing necessary patches to address critical security updates : please see Oracle VM Security Advisory OVMSA-2017-0057 for details.
    last seen 2019-02-21
    modified 2018-07-24
    plugin id 99163
    published 2017-04-03
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=99163
    title OracleVM 3.3 : Unbreakable / etc (OVMSA-2017-0057) (Dirty COW)
  • NASL family Ubuntu Local Security Checks
    NASL id UBUNTU_USN-2396-1.NASL
    description Nadav Amit reported that the KVM (Kernel Virtual Machine) mishandles noncanonical addresses when emulating instructions that change the rip (Instruction Pointer). A guest user with access to I/O or the MMIO can use this flaw to cause a denial of service (system crash) of the guest. (CVE-2014-3647) A flaw was discovered with the handling of the invept instruction in the KVM (Kernel Virtual Machine) subsystem of the Linux kernel. An unprivileged guest user could exploit this flaw to cause a denial of service (system crash) on the guest. (CVE-2014-3646) Lars Bull reported a race condition in the PIT (programmable interrupt timer) emulation in the KVM (Kernel Virtual Machine) subsystem of the Linux kernel. A local guest user with access to PIT i/o ports could exploit this flaw to cause a denial of service (crash) on the host. (CVE-2014-3611) Lars Bull and Nadav Amit reported a flaw in how KVM (the Kernel Virtual Machine) handles noncanonical writes to certain MSR registers. A privileged guest user can exploit this flaw to cause a denial of service (kernel panic) on the host. (CVE-2014-3610). Note that Tenable Network Security has extracted the preceding description block directly from the Ubuntu security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen 2019-02-21
    modified 2018-12-01
    plugin id 78821
    published 2014-11-03
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=78821
    title Ubuntu 14.10 : linux vulnerabilities (USN-2396-1)
  • NASL family Oracle Linux Local Security Checks
    NASL id ORACLELINUX_ELSA-2015-0290.NASL
    description The remote Oracle Linux host is missing a security update for one or more kernel-related packages.
    last seen 2019-02-21
    modified 2018-09-17
    plugin id 81800
    published 2015-03-13
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=81800
    title Oracle Linux 7 : kernel (ELSA-2015-0290)
  • NASL family Ubuntu Local Security Checks
    NASL id UBUNTU_USN-2395-1.NASL
    description Nadav Amit reported that the KVM (Kernel Virtual Machine) mishandles noncanonical addresses when emulating instructions that change the rip (Instruction Pointer). A guest user with access to I/O or the MMIO can use this flaw to cause a denial of service (system crash) of the guest. (CVE-2014-3647) A flaw was discovered with the handling of the invept instruction in the KVM (Kernel Virtual Machine) subsystem of the Linux kernel. An unprivileged guest user could exploit this flaw to cause a denial of service (system crash) on the guest. (CVE-2014-3646) Lars Bull reported a race condition in the PIT (programmable interrupt timer) emulation in the KVM (Kernel Virtual Machine) subsystem of the Linux kernel. A local guest user with access to PIT i/o ports could exploit this flaw to cause a denial of service (crash) on the host. (CVE-2014-3611) Lars Bull and Nadav Amit reported a flaw in how KVM (the Kernel Virtual Machine) handles noncanonical writes to certain MSR registers. A privileged guest user can exploit this flaw to cause a denial of service (kernel panic) on the host. (CVE-2014-3610) Raphael Geissert reported a NULL pointer dereference in the Linux kernel's CIFS client. A remote CIFS server could cause a denial of service (system crash) or possibly have other unspecified impact by deleting IPC$ share during resolution of DFS referrals. (CVE-2014-7145). Note that Tenable Network Security has extracted the preceding description block directly from the Ubuntu security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen 2019-02-21
    modified 2018-12-01
    plugin id 78765
    published 2014-10-31
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=78765
    title Ubuntu 14.04 LTS : linux vulnerabilities (USN-2395-1)
redhat via4
advisories
  • bugzilla
    id 1144878
    title CVE-2014-3611 kernel: kvm: PIT timer race condition
    oval
    AND
    • OR
      • comment Red Hat Enterprise Linux 6 Client is installed
        oval oval:com.redhat.rhba:tst:20111656001
      • comment Red Hat Enterprise Linux 6 Server is installed
        oval oval:com.redhat.rhba:tst:20111656002
      • comment Red Hat Enterprise Linux 6 Workstation is installed
        oval oval:com.redhat.rhba:tst:20111656003
      • comment Red Hat Enterprise Linux 6 ComputeNode is installed
        oval oval:com.redhat.rhba:tst:20111656004
    • OR
      • AND
        • comment kernel is earlier than 0:2.6.32-504.1.3.el6
          oval oval:com.redhat.rhsa:tst:20141843005
        • comment kernel is signed with Red Hat redhatrelease2 key
          oval oval:com.redhat.rhsa:tst:20100842006
      • AND
        • comment kernel-abi-whitelists is earlier than 0:2.6.32-504.1.3.el6
          oval oval:com.redhat.rhsa:tst:20141843025
        • comment kernel-abi-whitelists is signed with Red Hat redhatrelease2 key
          oval oval:com.redhat.rhsa:tst:20131645028
      • AND
        • comment kernel-bootwrapper is earlier than 0:2.6.32-504.1.3.el6
          oval oval:com.redhat.rhsa:tst:20141843007
        • comment kernel-bootwrapper is signed with Red Hat redhatrelease2 key
          oval oval:com.redhat.rhsa:tst:20100842010
      • AND
        • comment kernel-debug is earlier than 0:2.6.32-504.1.3.el6
          oval oval:com.redhat.rhsa:tst:20141843019
        • comment kernel-debug is signed with Red Hat redhatrelease2 key
          oval oval:com.redhat.rhsa:tst:20100842012
      • AND
        • comment kernel-debug-devel is earlier than 0:2.6.32-504.1.3.el6
          oval oval:com.redhat.rhsa:tst:20141843013
        • comment kernel-debug-devel is signed with Red Hat redhatrelease2 key
          oval oval:com.redhat.rhsa:tst:20100842014
      • AND
        • comment kernel-devel is earlier than 0:2.6.32-504.1.3.el6
          oval oval:com.redhat.rhsa:tst:20141843015
        • comment kernel-devel is signed with Red Hat redhatrelease2 key
          oval oval:com.redhat.rhsa:tst:20100842016
      • AND
        • comment kernel-doc is earlier than 0:2.6.32-504.1.3.el6
          oval oval:com.redhat.rhsa:tst:20141843027
        • comment kernel-doc is signed with Red Hat redhatrelease2 key
          oval oval:com.redhat.rhsa:tst:20100842024
      • AND
        • comment kernel-firmware is earlier than 0:2.6.32-504.1.3.el6
          oval oval:com.redhat.rhsa:tst:20141843029
        • comment kernel-firmware is signed with Red Hat redhatrelease2 key
          oval oval:com.redhat.rhsa:tst:20100842026
      • AND
        • comment kernel-headers is earlier than 0:2.6.32-504.1.3.el6
          oval oval:com.redhat.rhsa:tst:20141843009
        • comment kernel-headers is signed with Red Hat redhatrelease2 key
          oval oval:com.redhat.rhsa:tst:20100842008
      • AND
        • comment kernel-kdump is earlier than 0:2.6.32-504.1.3.el6
          oval oval:com.redhat.rhsa:tst:20141843021
        • comment kernel-kdump is signed with Red Hat redhatrelease2 key
          oval oval:com.redhat.rhsa:tst:20100842018
      • AND
        • comment kernel-kdump-devel is earlier than 0:2.6.32-504.1.3.el6
          oval oval:com.redhat.rhsa:tst:20141843023
        • comment kernel-kdump-devel is signed with Red Hat redhatrelease2 key
          oval oval:com.redhat.rhsa:tst:20100842020
      • AND
        • comment perf is earlier than 0:2.6.32-504.1.3.el6
          oval oval:com.redhat.rhsa:tst:20141843011
        • comment perf is signed with Red Hat redhatrelease2 key
          oval oval:com.redhat.rhsa:tst:20100842022
      • AND
        • comment python-perf is earlier than 0:2.6.32-504.1.3.el6
          oval oval:com.redhat.rhsa:tst:20141843017
        • comment python-perf is signed with Red Hat redhatrelease2 key
          oval oval:com.redhat.rhsa:tst:20111530020
    rhsa
    id RHSA-2014:1843
    released 2014-11-11
    severity Important
    title RHSA-2014:1843: kernel security and bug fix update (Important)
  • rhsa
    id RHSA-2015:0126
  • rhsa
    id RHSA-2015:0284
rpms
  • kernel-0:3.10.0-123.9.2.el7
  • kernel-abi-whitelists-0:3.10.0-123.9.2.el7
  • kernel-bootwrapper-0:3.10.0-123.9.2.el7
  • kernel-debug-0:3.10.0-123.9.2.el7
  • kernel-debug-devel-0:3.10.0-123.9.2.el7
  • kernel-devel-0:3.10.0-123.9.2.el7
  • kernel-doc-0:3.10.0-123.9.2.el7
  • kernel-headers-0:3.10.0-123.9.2.el7
  • kernel-kdump-0:3.10.0-123.9.2.el7
  • kernel-kdump-devel-0:3.10.0-123.9.2.el7
  • kernel-tools-0:3.10.0-123.9.2.el7
  • kernel-tools-libs-0:3.10.0-123.9.2.el7
  • kernel-tools-libs-devel-0:3.10.0-123.9.2.el7
  • perf-0:3.10.0-123.9.2.el7
  • python-perf-0:3.10.0-123.9.2.el7
  • kernel-0:2.6.32-504.1.3.el6
  • kernel-abi-whitelists-0:2.6.32-504.1.3.el6
  • kernel-bootwrapper-0:2.6.32-504.1.3.el6
  • kernel-debug-0:2.6.32-504.1.3.el6
  • kernel-debug-devel-0:2.6.32-504.1.3.el6
  • kernel-devel-0:2.6.32-504.1.3.el6
  • kernel-doc-0:2.6.32-504.1.3.el6
  • kernel-firmware-0:2.6.32-504.1.3.el6
  • kernel-headers-0:2.6.32-504.1.3.el6
  • kernel-kdump-0:2.6.32-504.1.3.el6
  • kernel-kdump-devel-0:2.6.32-504.1.3.el6
  • perf-0:2.6.32-504.1.3.el6
  • python-perf-0:2.6.32-504.1.3.el6
refmap via4
confirm
debian DSA-3060
mlist [oss-security] 20141024 kvm issues
suse
  • SUSE-SU-2015:0481
  • openSUSE-SU-2015:0566
ubuntu
  • USN-2394-1
  • USN-2417-1
  • USN-2418-1
Last major update 25-03-2015 - 21:59
Published 10-11-2014 - 06:55
Back to Top