ID CVE-2009-0032
Summary CUPS on Mandriva Linux 2008.0, 2008.1, 2009.0, Corporate Server (CS) 3.0 and 4.0, and Multi Network Firewall (MNF) 2.0 allows local users to overwrite arbitrary files via a symlink attack on the /tmp/pdf.log temporary file.
References
Vulnerable Configurations
  • cpe:2.3:a:apple:cups
    cpe:2.3:a:apple:cups
  • Mandriva Linux 2008.0
    cpe:2.3:o:mandriva:linux:2008.0
  • Mandriva Linux 2008.0 x86_64
    cpe:2.3:o:mandriva:linux:2008.0:-:x86_64
  • Mandrake Linux 2008.1
    cpe:2.3:o:mandriva:linux:2008.1
  • Mandriva Linux 2008.1 x86_64
    cpe:2.3:o:mandriva:linux:2008.1:-:x86_64
  • Mandriva Linux 2009.0
    cpe:2.3:o:mandriva:linux:2009.0
  • Mandriva Corporate Server 3.0
    cpe:2.3:o:mandriva:corporate_server:3.0
  • Mandriva Corporate Server 3.0 x86_64
    cpe:2.3:o:mandriva:corporate_server:3.0:-:x86_64
  • Mandriva Corporate Server 4.0
    cpe:2.3:o:mandriva:corporate_server:4.0
  • Mandriva Corporate Server 4.0 x86_64
    cpe:2.3:o:mandriva:corporate_server:4.0:-:x86_64
  • Mandriva Multi Network Firewall 2.0
    cpe:2.3:o:mandriva:multi_network_firewall:2.0
CVSS
Base: 6.9 (as of 28-01-2009 - 08:33)
Impact:
Exploitability:
CWE CWE-59
CAPEC
  • Symlink Attack
    An attacker positions a symbolic link in such a manner that the targeted user or application accesses the link's endpoint, assuming that it is accessing a file with the link's name. The endpoint file may be either output or input. If the file is output, the result is that the endpoint is modified, instead of a file at the intended location. Modifications to the endpoint file may include appending, overwriting, corrupting, changing permissions, or other modifications. In some variants of this attack the attacker may be able to control the change to a file while in other cases they cannot. The former is especially damaging since the attacker may be able to grant themselves increased privileges or insert false information, but the latter can also be damaging as it can expose sensitive information or corrupt or destroy vital system or application files. Alternatively, the endpoint file may serve as input to the targeted application. This can be used to feed malformed input into the target or to cause the target to process different information, possibly allowing the attacker to control the actions of the target or to cause the target to expose information to the attacker. Moreover, the actions taken on the endpoint file are undertaken with the permissions of the targeted user or application, which may exceed the permissions that the attacker would normally have.
  • Accessing, Modifying or Executing Executable Files
    An attack of this type exploits a system's configuration that allows an attacker to either directly access an executable file, for example through shell access; or in a possible worst case allows an attacker to upload a file and then execute it. Web servers, ftp servers, and message oriented middleware systems which have many integration points are particularly vulnerable, because both the programmers and the administrators must be in synch regarding the interfaces and the correct privileges for each interface.
  • Leverage Executable Code in Non-Executable Files
    An attack of this type exploits a system's trust in configuration and resource files, when the executable loads the resource (such as an image file or configuration file) the attacker has modified the file to either execute malicious code directly or manipulate the target process (e.g. application server) to execute based on the malicious configuration parameters. Since systems are increasingly interrelated mashing up resources from local and remote sources the possibility of this attack occurring is high. The attack can be directed at a client system, such as causing buffer overrun through loading seemingly benign image files, as in Microsoft Security Bulletin MS04-028 where specially crafted JPEG files could cause a buffer overrun once loaded into the browser. Another example targets clients reading pdf files. In this case the attacker simply appends javascript to the end of a legitimate url for a pdf (http://www.gnucitizen.org/blog/danger-danger-danger/) http://path/to/pdf/file.pdf#whatever_name_you_want=javascript:your_code_here The client assumes that they are reading a pdf, but the attacker has modified the resource and loaded executable javascript into the client's browser process. The attack can also target server processes. The attacker edits the resource or configuration file, for example a web.xml file used to configure security permissions for a J2EE app server, adding role name "public" grants all users with the public role the ability to use the administration functionality. The server trusts its configuration file to be correct, but when they are manipulated, the attacker gains full control.
  • Manipulating Input to File System Calls
    An attacker manipulates inputs to the target software which the target software passes to file system calls in the OS. The goal is to gain access to, and perhaps modify, areas of the file system that the target software did not intend to be accessible.
Access
VectorComplexityAuthentication
LOCAL MEDIUM NONE
Impact
ConfidentialityIntegrityAvailability
COMPLETE COMPLETE COMPLETE
nessus via4
  • NASL family Mandriva Local Security Checks
    NASL id MANDRIVA_MDVSA-2009-028.NASL
    description Security vulnerabilities have been discovered and corrected in CUPS. CUPS before 1.3.8 allows local users, and possibly remote attackers, to cause a denial of service (daemon crash) by adding a large number of RSS Subscriptions, which triggers a NULL pointer dereference (CVE-2008-5183). The web interface (cgi-bin/admin.c) in CUPS before 1.3.8 uses the guest username when a user is not logged on to the web server, which makes it easier for remote attackers to bypass intended policy and conduct CSRF attacks via the (1) add and (2) cancel RSS subscription functions (CVE-2008-5184). CUPS 1.1.17 through 1.3.9 allows remote attackers to execute arbitrary code via a PNG image with a large height value, which bypasses a validation check and triggers a buffer overflow (CVE-2008-5286). CUPS shipped with Mandriva Linux allows local users to overwrite arbitrary files via a symlink attack on the /tmp/pdf.log temporary file (CVE-2009-0032). The updated packages have been patched to prevent this.
    last seen 2019-02-21
    modified 2018-07-19
    plugin id 36414
    published 2009-04-23
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=36414
    title Mandriva Linux Security Advisory : cups (MDVSA-2009:028)
  • NASL family Mandriva Local Security Checks
    NASL id MANDRIVA_MDVSA-2009-027.NASL
    description A vulnerability has been discovered in CUPS shipped with Mandriva Linux which allows local users to overwrite arbitrary files via a symlink attack on the /tmp/pdf.log temporary file (CVE-2009-0032). The updated packages have been patched to prevent this.
    last seen 2019-02-21
    modified 2018-07-19
    plugin id 37103
    published 2009-04-23
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=37103
    title Mandriva Linux Security Advisory : cups (MDVSA-2009:027)
refmap via4
bid 33418
mandriva
  • MDVSA-2009:027
  • MDVSA-2009:028
  • MDVSA-2009:029
sectrack 1021637
xf cups-pdflog-symlink(48210)
statements via4
contributor Joshua Bressers
lastmodified 2009-01-27
organization Red Hat
statement Not vulnerable. Red Hat does not ship the vulnerable backend that causes this flaw.
Last major update 28-01-2009 - 00:00
Published 27-01-2009 - 15:30
Last modified 07-08-2017 - 21:33
Back to Top