ID |
CVE-2017-0103
|
Summary |
The kernel API in Microsoft Windows Vista SP2, Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, and Windows Server 2012 mishandles registry objects in memory, which allows local users to gain privileges via a crafted application, aka "Windows Registry Elevation of Privilege Vulnerability." |
References |
|
Vulnerable Configurations |
-
Microsoft Windows Server 2008 Service Pack 2
cpe:2.3:o:microsoft:windows_server_2008:-:sp2
-
cpe:2.3:o:microsoft:windows_7:-:sp1
cpe:2.3:o:microsoft:windows_7:-:sp1
-
Microsoft Windows Server 2008 R2 Service Pack 1
cpe:2.3:o:microsoft:windows_server_2008:r2:sp1
-
Microsoft Windows Server 2012
cpe:2.3:o:microsoft:windows_server_2012
-
Microsoft Windows Vista Service Pack 2
cpe:2.3:o:microsoft:windows_vista:-:sp2
|
CVSS |
Base: | 4.4 (as of 20-03-2017 - 09:53) |
Impact: | |
Exploitability: | |
|
CWE |
CWE-119 |
CAPEC |
-
Buffer Overflow via Environment Variables
This attack pattern involves causing a buffer overflow through manipulation of environment variables. Once the attacker finds that they can modify an environment variable, they may try to overflow associated buffers. This attack leverages implicit trust often placed in environment variables.
-
Overflow Buffers
Buffer Overflow attacks target improper or missing bounds checking on buffer operations, typically triggered by input injected by an attacker. As a consequence, an attacker is able to write past the boundaries of allocated buffer regions in memory, causing a program crash or potentially redirection of execution as per the attackers' choice.
-
Client-side Injection-induced Buffer Overflow
This type of attack exploits a buffer overflow vulnerability in targeted client software through injection of malicious content from a custom-built hostile service.
-
Filter Failure through Buffer Overflow
In this attack, the idea is to cause an active filter to fail by causing an oversized transaction. An attacker may try to feed overly long input strings to the program in an attempt to overwhelm the filter (by causing a buffer overflow) and hoping that the filter does not fail securely (i.e. the user input is let into the system unfiltered).
-
MIME Conversion
An attacker exploits a weakness in the MIME conversion routine to cause a buffer overflow and gain control over the mail server machine. The MIME system is designed to allow various different information formats to be interpreted and sent via e-mail. Attack points exist when data are converted to MIME compatible format and back.
-
Overflow Binary Resource File
An attack of this type exploits a buffer overflow vulnerability in the handling of binary resources. Binary resources may include music files like MP3, image files like JPEG files, and any other binary file. These attacks may pass unnoticed to the client machine through normal usage of files, such as a browser loading a seemingly innocent JPEG file. This can allow the attacker access to the execution stack and execute arbitrary code in the target process. This attack pattern is a variant of standard buffer overflow attacks using an unexpected vector (binary files) to wrap its attack and open up a new attack vector. The attacker is required to either directly serve the binary content to the victim, or place it in a locale like a MP3 sharing application, for the victim to download. The attacker then is notified upon the download or otherwise locates the vulnerability opened up by the buffer overflow.
-
Buffer Overflow via Symbolic Links
This type of attack leverages the use of symbolic links to cause buffer overflows. An attacker can try to create or manipulate a symbolic link file such that its contents result in out of bounds data. When the target software processes the symbolic link file, it could potentially overflow internal buffers with insufficient bounds checking.
-
Overflow Variables and Tags
This type of attack leverages the use of tags or variables from a formatted configuration data to cause buffer overflow. The attacker crafts a malicious HTML page or configuration file that includes oversized strings, thus causing an overflow.
-
Buffer Overflow via Parameter Expansion
In this attack, the target software is given input that the attacker knows will be modified and expanded in size during processing. This attack relies on the target software failing to anticipate that the expanded data may exceed some internal limit, thereby creating a buffer overflow.
-
Buffer Overflow in an API Call
This attack targets libraries or shared code modules which are vulnerable to buffer overflow attacks. An attacker who has access to an API may try to embed malicious code in the API function call and exploit a buffer overflow vulnerability in the function's implementation. All clients that make use of the code library thus become vulnerable by association. This has a very broad effect on security across a system, usually affecting more than one software process.
-
Buffer Overflow in Local Command-Line Utilities
This attack targets command-line utilities available in a number of shells. An attacker can leverage a vulnerability found in a command-line utility to escalate privilege to root.
|
Access |
Vector | Complexity | Authentication |
LOCAL |
MEDIUM |
NONE |
|
Impact |
Confidentiality | Integrity | Availability |
PARTIAL |
PARTIAL |
PARTIAL |
|
exploit-db
via4
|
description | Microsoft Windows Kernel - Registry Hive Loading Crashes in nt!nt!HvpGetBinMemAlloc and nt!ExpFindAndRemoveTagBigPages (MS17-017). CVE-2017-0103. Dos exploit... | file | exploits/windows/dos/41645.txt | id | EDB-ID:41645 | last seen | 2017-03-20 | modified | 2017-03-20 | platform | windows | port | | published | 2017-03-20 | reporter | Exploit-DB | source | https://www.exploit-db.com/download/41645/ | title | Microsoft Windows Kernel - Registry Hive Loading Crashes in nt!nt!HvpGetBinMemAlloc and nt!ExpFindAndRemoveTagBigPages (MS17-017) | type | dos |
|
msbulletin
via4
|
|
nessus
via4
|
NASL family | Windows : Microsoft Bulletins | NASL id | SMB_NT_MS17-017.NASL | description | The remote Windows host is missing a security update. It is,
therefore, affected by multiple elevation of privilege
vulnerabilities :
- An elevation of privilege vulnerability exists in the
Windows Kernel API due to improper enforcement of
permissions. A local attacker can exploit this, via a
specially crafted application, to run processes in an
elevated context. (CVE-2017-0050)
- An elevation of privilege vulnerability exists in the
Windows Transaction Manager due to improper handling of
objects in memory. A local attacker can exploit this,
via a specially crafted application, to run processes in
an elevated context. (CVE-2017-0101)
- An elevation of privilege vulnerability exists due to a
failure to check the length of a buffer prior to copying
memory. A local attacker can exploit this, by copying a
file to a shared folder or drive, to gain elevated
privileges. (CVE-2017-0102)
- An elevation of privilege vulnerability exists in the
Windows Kernel API due to improper handling of objects
in memory. A local attacker can exploit this, via a
specially crafted application, to gain elevated
privileges. (CVE-2017-0103) | last seen | 2019-01-16 | modified | 2018-07-30 | plugin id | 97733 | published | 2017-03-14 | reporter | Tenable | source | https://www.tenable.com/plugins/index.php?view=single&id=97733 | title | MS17-017: Security Update for Windows Kernel (4013081) |
|
refmap
via4
|
|
Last major update |
20-03-2017 - 14:54 |
Published |
16-03-2017 - 20:59 |
Last modified |
15-08-2017 - 21:29 |