ID CVE-2017-8739
Summary Microsoft Edge in Microsoft Windows 10 1703 allows an attacker to obtain information to further compromise the user's system, due to the way that the Microsoft Edge scripting engine handles objects in memory, aka "Scripting Engine Information Disclosure Vulnerability".
References
Vulnerable Configurations
  • Microsoft Edge
    cpe:2.3:a:microsoft:edge
  • Microsoft Windows 10 1703
    cpe:2.3:o:microsoft:windows_10:1703
CVSS
Base: 4.3
Impact:
Exploitability:
CWE CWE-200
CAPEC
  • Subverting Environment Variable Values
    The attacker directly or indirectly modifies environment variables used by or controlling the target software. The attacker's goal is to cause the target software to deviate from its expected operation in a manner that benefits the attacker.
  • Footprinting
    An attacker engages in probing and exploration activity to identify constituents and properties of the target. Footprinting is a general term to describe a variety of information gathering techniques, often used by attackers in preparation for some attack. It consists of using tools to learn as much as possible about the composition, configuration, and security mechanisms of the targeted application, system or network. Information that might be collected during a footprinting effort could include open ports, applications and their versions, network topology, and similar information. While footprinting is not intended to be damaging (although certain activities, such as network scans, can sometimes cause disruptions to vulnerable applications inadvertently) it may often pave the way for more damaging attacks.
  • Exploiting Trust in Client (aka Make the Client Invisible)
    An attack of this type exploits a programs' vulnerabilities in client/server communication channel authentication and data integrity. It leverages the implicit trust a server places in the client, or more importantly, that which the server believes is the client. An attacker executes this type of attack by placing themselves in the communication channel between client and server such that communication directly to the server is possible where the server believes it is communicating only with a valid client. There are numerous variations of this type of attack.
  • Browser Fingerprinting
    An attacker carefully crafts small snippets of Java Script to efficiently detect the type of browser the potential victim is using. Many web-based attacks need prior knowledge of the web browser including the version of browser to ensure successful exploitation of a vulnerability. Having this knowledge allows an attacker to target the victim with attacks that specifically exploit known or zero day weaknesses in the type and version of the browser used by the victim. Automating this process via Java Script as a part of the same delivery system used to exploit the browser is considered more efficient as the attacker can supply a browser fingerprinting method and integrate it with exploit code, all contained in Java Script and in response to the same web page request by the browser.
  • Session Credential Falsification through Prediction
    This attack targets predictable session ID in order to gain privileges. The attacker can predict the session ID used during a transaction to perform spoofing and session hijacking.
  • Reusing Session IDs (aka Session Replay)
    This attack targets the reuse of valid session ID to spoof the target system in order to gain privileges. The attacker tries to reuse a stolen session ID used previously during a transaction to perform spoofing and session hijacking. Another name for this type of attack is Session Replay.
  • Using Slashes in Alternate Encoding
    This attack targets the encoding of the Slash characters. An attacker would try to exploit common filtering problems related to the use of the slashes characters to gain access to resources on the target host. Directory-driven systems, such as file systems and databases, typically use the slash character to indicate traversal between directories or other container components. For murky historical reasons, PCs (and, as a result, Microsoft OSs) choose to use a backslash, whereas the UNIX world typically makes use of the forward slash. The schizophrenic result is that many MS-based systems are required to understand both forms of the slash. This gives the attacker many opportunities to discover and abuse a number of common filtering problems. The goal of this pattern is to discover server software that only applies filters to one version, but not the other.
msbulletin via4
bulletin_SOURCE_FILE https://portal.msrc.microsoft.com/api/security-guidance/en-us/
cves_url https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2017-8739
impact Information Disclosure
knowledgebase_SOURCE_FILE https://support.microsoft.com/help/4038788
knowledgebase_id 4038788
name Microsoft Edge
publishedDate 2017-09-12T07:00:00
severity Important
nessus via4
NASL family Windows : Microsoft Bulletins
NASL id SMB_NT_MS17_SEP_4038788.NASL
description The remote Windows host is missing security update 4038788. It is, therefore, affected by multiple vulnerabilities : - A race condition that could lead to a remote code execution vulnerability exists in NetBT Session Services when NetBT fails to maintain certain sequencing requirements. (CVE-2017-0161) - A vulnerability exists when Microsoft Edge improperly accesses objects in memory. The vulnerability could corrupt memory in such a way that an attacker could execute arbitrary code in the context of the current user. (CVE-2017-11766) - An information disclosure vulnerability exists when Microsoft Edge does not properly handle objects in memory. An attacker who successfully exploited the vulnerability could obtain information to further compromise the user's system. (CVE-2017-8597) - A spoofing vulnerability exists in Microsoft's implementation of the Bluetooth stack. An attacker who successfully exploited this vulnerability could perform a man-in-the-middle attack and force a user's computer to unknowingly route traffic through the attacker's computer. (CVE-2017-8628) - An information disclosure vulnerability exists when Microsoft Edge improperly handles clipboard events. For an attack to be successful, an attacker must persuade a user to visit a malicious website and leave it open during clipboard activities. The update addresses the vulnerability by changing how Microsoft Edge handles clipboard events in the browser. (CVE-2017-8643) - An information disclosure vulnerability exists when Microsoft Edge improperly handles objects in memory. An attacker who successfully exploited the vulnerability could obtain information to further compromise the users system. (CVE-2017-8648) - A remote code execution vulnerability exists in the way that Microsoft browser JavaScript engines render content when handling objects in memory. The vulnerability could corrupt memory in such a way that an attacker could execute arbitrary code in the context of the current user. (CVE-2017-8649) - A remote code execution vulnerability exists in the way that Microsoft browser JavaScript engines render content when handling objects in memory. The vulnerability could corrupt memory in such a way that an attacker could execute arbitrary code in the context of the current user. (CVE-2017-8649, CVE-2017-8660) - An elevation of privilege vulnerability exists in Windows when the Windows kernel-mode driver fails to properly handle objects in memory. An attacker who successfully exploited this vulnerability could run arbitrary code in kernel mode. (CVE-2017-8675) - An information disclosure vulnerability exists in the way that the Windows Graphics Device Interface (GDI) handles objects in memory, allowing an attacker to retrieve information from a targeted system. By itself, the information disclosure does not allow arbitrary code execution; however, it could allow arbitrary code to be run if the attacker uses it in combination with another vulnerability. (CVE-2017-8676) - A information disclosure vulnerability exists when the Windows GDI+ component improperly discloses kernel memory addresses. An attacker who successfully exploited the vulnerability could obtain information to further compromise the users system.(CVE-2017-8677) - An information disclosure vulnerability exists when the Windows kernel improperly handles objects in memory. An attacker who successfully exploited this vulnerability could obtain information to further compromise the users system. (CVE-2017-8678) - An information disclosure vulnerability exists when the Windows kernel improperly handles objects in memory. An attacker who successfully exploited this vulnerability could obtain information to further compromise the users system. (CVE-2017-8678, CVE-2017-8679) - A information disclosure vulnerability exists when the Windows GDI+ component improperly discloses kernel memory addresses. An attacker who successfully exploited the vulnerability could obtain information to further compromise the users system. (CVE-2017-8677, CVE-2017-8681) - A remote code execution vulnerability exists when the Windows font library improperly handles specially crafted embedded fonts. An attacker who successfully exploited this vulnerability could take control of the affected system. An attacker could then install programs; view, change, or delete data; or create new accounts with full user rights. (CVE-2017-8682) - An information disclosure vulnerability exists when the Microsoft Windows Graphics Component improperly handles objects in memory. An attacker who successfully exploited the vulnerability could obtain information to further compromise the users system. (CVE-2017-8683) - An Information disclosure vulnerability exists in Windows kernel that could allow an attacker to retrieve information that could lead to a Kernel Address Space Layout Randomization (KASLR) bypass. An attacker who successfully exploited this vulnerability could retrieve the memory address of a kernel object.(CVE-2017-8687) - An information disclosure vulnerability exists in the way that the Windows Graphics Device Interface+ (GDI+) handles objects in memory, allowing an attacker to retrieve information from a targeted system. By itself, the information disclosure does not allow arbitrary code execution; however, it could allow arbitrary code to be run if the attacker uses it in combination with another vulnerability.(CVE-2017-8688) - A remote code execution vulnerability exists due to the way Windows Uniscribe handles objects in memory. An attacker who successfully exploited this vulnerability could take control of the affected system. An attacker could then install programs; view, change, or delete data; or create new accounts with full user rights. (CVE-2017-8692) - An information disclosure vulnerability exists when Windows Uniscribe improperly discloses the contents of its memory. An attacker who successfully exploited the vulnerability could obtain information to further compromise the users system. (CVE-2017-8695) - A remote code execution vulnerability exists when Windows Shell does not properly validate file copy destinations. An attacker who successfully exploited the vulnerability could run arbitrary code in the context of the current user. (CVE-2017-8699) - An information disclosure vulnerability exists when Windows Hyper-V on a host operating system fails to properly validate input from an authenticated user on a guest operating system. (CVE-2017-8706) - An information disclosure vulnerability exists when Windows Hyper-V on a host operating system fails to properly validate input from an authenticated user on a guest operating system. (CVE-2017-8706, CVE-2017-8707) - An information disclosure vulnerability exists when the Windows kernel fails to properly initialize a memory address, allowing an attacker to retrieve information that could lead to a Kernel Address Space Layout Randomization (KASLR) bypass. (CVE-2017-8708) - An information disclosure vulnerability exists when the Windows kernel improperly handles objects in memory. An attacker who successfully exploited this vulnerability could obtain information to further compromise the users system. (CVE-2017-8678, CVE-2017-8679, CVE-2017-8709) - An information disclosure vulnerability exists when Windows Hyper-V on a host operating system fails to properly validate input from an authenticated user on a guest operating system. (CVE-2017-8706, CVE-2017-8707, CVE-2017-8712) - An information disclosure vulnerability exists when Windows Hyper-V on a host operating system fails to properly validate input from an authenticated user on a guest operating system. (CVE-2017-8706, CVE-2017-8707, CVE-2017-8712,CVE-2017-8713) - A security feature bypass vulnerability exists when Windows Control Flow Guard mishandles objects in memory. (CVE-2017-8716) - An information disclosure vulnerability exists when the Windows kernel improperly handles objects in memory. An attacker who successfully exploited this vulnerability could obtain information to further compromise the users system. (CVE-2017-8678, CVE-2017-8679, CVE-2017-8709, CVE-2017-8719) - An elevation of privilege vulnerability exists in Windows when the Win32k component fails to properly handle objects in memory. (CVE-2017-8720) - A security feature bypass exists in Microsoft Edge when the Edge Content Security Policy (CSP) fails to properly validate certain specially crafted documents. An attacker who exploited the bypass could trick a user into loading a page containing malicious content. (CVE-2017-8723) - A spoofing vulnerability exists when Microsoft Edge does not properly parse HTTP content. (CVE-2017-8724) - A remote code execution vulnerability exists when Microsoft Windows PDF Library improperly handles objects in memory. The vulnerability could corrupt memory in a way that enables an attacker to execute arbitrary code in the context of the current user. An attacker who successfully exploited the vulnerability could gain the same user rights as the current user. (CVE-2017-8728) - A spoofing vulnerability exists when Internet Explorer improperly handles specific HTML content. An attacker who successfully exploited this vulnerability could trick a user into believing that the user was visiting a legitimate website. The specially crafted website could either spoof content or serve as a pivot to chain an attack with other vulnerabilities in web services. To exploit the vulnerability, the user must either browse to a malicious website or be redirected to it. (CVE-2017-8733) - A remote code execution vulnerability exists when Microsoft Edge improperly accesses objects in memory. The vulnerability could corrupt memory in such a way that enables an attacker to execute arbitrary code in the context of the current user. An attacker who successfully exploited the vulnerability could gain the same user rights as the current user. (CVE-2017-8734) - A spoofing vulnerability exists when Microsoft Edge does not properly parse HTTP content. An attacker who successfully exploited this vulnerability could trick a user by redirecting the user to a specially crafted website. The specially crafted website could either spoof content or serve as a pivot to chain an attack with other vulnerabilities in web services. (CVE-2017-8724, CVE-2017-8735) - An information disclosure vulnerability exists in Microsoft browsers due to improper parent domain verification in certain functionality. An attacker who successfully exploited the vulnerability could obtain specific information that is used in the parent domain. (CVE-2017-8736) - A remote code execution vulnerability exists when Microsoft Windows PDF Library improperly handles objects in memory. The vulnerability could corrupt memory in a way that enables an attacker to execute arbitrary code in the context of the current user. An attacker who successfully exploited the vulnerability could gain the same user rights as the current user. (CVE-2017-8728, CVE-2017-8737) - An information disclosure vulnerability exists when the scripting engine does not properly handle objects in memory in Microsoft Edge. (CVE-2017-8739) - A remote code execution vulnerability exists in the way that Microsoft browser JavaScript engines render content when handling objects in memory. The vulnerability could corrupt memory in such a way that an attacker could execute arbitrary code in the context of the current user.(CVE-2017-8649, CVE-2017-8660, CVE-2017-8741) - A security feature bypass vulnerability exists in Device Guard that could allow an attacker to inject malicious code into a Windows PowerShell session. An attacker who successfully exploited this vulnerability could inject code into a trusted PowerShell process to bypass the Device Guard Code Integrity policy on the local machine. (CVE-2017-8746) - A remote code execution vulnerability exists when Internet Explorer improperly accesses objects in memory. The vulnerability could corrupt memory in such a way that an attacker could execute arbitrary code in the context of the current user.(CVE-2017-8747) - A remote code execution vulnerability exists in the way that Microsoft browser JavaScript engines render content when handling objects in memory. The vulnerability could corrupt memory in such a way that an attacker could execute arbitrary code in the context of the current user. (CVE-2017-8649, CVE-2017-8660, CVE-2017-8741, CVE-2017-8748) - A remote code execution vulnerability exists when Internet Explorer improperly accesses objects in memory. The vulnerability could corrupt memory in such a way that an attacker could execute arbitrary code in the context of the current user.(CVE-2017-8747, CVE-2017-8749) - A remote code execution vulnerability exists when Microsoft browsers improperly access objects in memory. The vulnerability could corrupt memory in such a way that an attacker could execute arbitrary code in the context of the current user. (CVE-2017-8750) - A remote code execution vulnerability exists when Microsoft Edge improperly accesses objects in memory. The vulnerability could corrupt memory in such a way that enables an attacker to execute arbitrary code in the context of the current user. An attacker who successfully exploited the vulnerability could gain the same user rights as the current user. (CVE-2017-8734, CVE-2017-8751) - A security feature bypass exists in Microsoft Edge when the Edge Content Security Policy (CSP) fails to properly validate certain specially crafted documents. An attacker who exploited the bypass could trick a user into loading a page containing malicious content. To exploit the bypass, an attacker must trick a user into either loading a page containing malicious content or visiting a malicious website. The attacker could also inject the malicious page into either a compromised website or an advertisement network. The update addresses the bypass by correcting how the Edge CSP validates documents. (CVE-2017-8723, CVE-2017-8754) - A remote code execution vulnerability exists in the way that the scripting engine handles objects in memory in Microsoft Edge. The vulnerability could corrupt memory in such a way that an attacker could execute arbitrary code in the context of the current user. An attacker who successfully exploited the vulnerability could gain the same user rights as the current user. (CVE-2017-11764, CVE-2017-8729, CVE-2017-8740, CVE-2017-8752, CVE-2017-8753, CVE-2017-8755, CVE-2017-8756) - A remote code execution vulnerability exists in the way Microsoft Edge handles objects in memory. The vulnerability could corrupt memory in such a way that an attacker could execute arbitrary code in the context of the current user. (CVE-2017-8757) - A remote code execution vulnerability exists when Microsoft .NET Framework processes untrusted input. An attacker who successfully exploited this vulnerability in software using the .NET framework could take control of an affected system. An attacker could then install programs; view, change, or delete data; or create new accounts with full user rights. (CVE-2017-8759)
last seen 2018-03-03
modified 2018-03-02
plugin id 103130
published 2017-09-12
reporter Tenable
source https://www.tenable.com/plugins/index.php?view=single&id=103130
title KB4038788: Windows 10 Version 1703 September 2017 Cumulative Update
refmap via4
bid 100761
confirm https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2017-8739
sectrack 1039342
Last major update 12-09-2017 - 21:29
Published 12-09-2017 - 21:29
Last modified 20-09-2017 - 14:38
Back to Top