ID CVE-2017-16532
Summary The get_endpoints function in drivers/usb/misc/usbtest.c in the Linux kernel through 4.13.11 allows local users to cause a denial of service (NULL pointer dereference and system crash) or possibly have unspecified other impact via a crafted USB device.
References
Vulnerable Configurations
  • Linux Kernel 4.13.11
    cpe:2.3:o:linux:linux_kernel:4.13.11
CVSS
Base: 7.2
Impact:
Exploitability:
CWE CWE-476
CAPEC
nessus via4
  • NASL family Fedora Local Security Checks
    NASL id FEDORA_2017-ABDA708CEE.NASL
    description The 4.13.12 update contains a number of important fixes across the tree. It contains security fixes for CVE-2017-16532 and CVE-2017-16538. Note that Tenable Network Security has extracted the preceding description block directly from the Fedora update system website. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen 2018-02-04
    modified 2018-02-02
    plugin id 105951
    published 2018-01-15
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=105951
    title Fedora 27 : kernel (2017-abda708cee)
  • NASL family Fedora Local Security Checks
    NASL id FEDORA_2017-08A350C878.NASL
    description The 4.13.12 update contains a number of important fixes across the tree. It contains security fixes for CVE-2017-16532 and CVE-2017-16538. Note that Tenable Network Security has extracted the preceding description block directly from the Fedora update system website. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen 2018-02-02
    modified 2018-02-01
    plugin id 104589
    published 2017-11-16
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=104589
    title Fedora 25 : kernel (2017-08a350c878)
  • NASL family Ubuntu Local Security Checks
    NASL id UBUNTU_USN-3617-3.NASL
    description It was discovered that a race condition leading to a use-after-free vulnerability existed in the ALSA PCM subsystem of the Linux kernel. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-0861) It was discovered that a use-after-free vulnerability existed in the network namespaces implementation in the Linux kernel. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-15129) Andrey Konovalov discovered that the usbtest device driver in the Linux kernel did not properly validate endpoint metadata. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16532) Andrey Konovalov discovered that the SoundGraph iMON USB driver in the Linux kernel did not properly validate device metadata. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16537) Andrey Konovalov discovered that the IMS Passenger Control Unit USB driver in the Linux kernel did not properly validate device descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16645) Andrey Konovalov discovered that the DiBcom DiB0700 USB DVB driver in the Linux kernel did not properly handle detach events. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16646) Andrey Konovalov discovered that the ASIX Ethernet USB driver in the Linux kernel did not properly handle suspend and resume events. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16647) Andrey Konovalov discovered that the CDC USB Ethernet driver did not properly validate device descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16649) Andrey Konovalov discovered that the QMI WWAN USB driver did not properly validate device descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16650) It was discovered that the HugeTLB component of the Linux kernel did not properly handle holes in hugetlb ranges. A local attacker could use this to expose sensitive information (kernel memory). (CVE-2017-16994) It was discovered that the netfilter component of the Linux did not properly restrict access to the connection tracking helpers list. A local attacker could use this to bypass intended access restrictions. (CVE-2017-17448) It was discovered that the netfilter passive OS fingerprinting (xt_osf) module did not properly perform access control checks. A local attacker could improperly modify the system-wide OS fingerprint list. (CVE-2017-17450) Dmitry Vyukov discovered that the KVM implementation in the Linux kernel contained an out-of-bounds read when handling memory-mapped I/O. A local attacker could use this to expose sensitive information. (CVE-2017-17741) It was discovered that the Salsa20 encryption algorithm implementations in the Linux kernel did not properly handle zero-length inputs. A local attacker could use this to cause a denial of service (system crash). (CVE-2017-17805) It was discovered that the HMAC implementation did not validate the state of the underlying cryptographic hash algorithm. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-17806) It was discovered that the keyring implementation in the Linux kernel did not properly check permissions when a key request was performed on a tasks' default keyring. A local attacker could use this to add keys to unauthorized keyrings. (CVE-2017-17807) It was discovered that a race condition existed in the OCFS2 file system implementation in the Linux kernel. A local attacker could use this to cause a denial of service (kernel deadlock). (CVE-2017-18204) It was discovered that the Broadcom NetXtremeII ethernet driver in the Linux kernel did not properly validate Generic Segment Offload (GSO) packet sizes. An attacker could use this to cause a denial of service (interface unavailability). (CVE-2018-1000026) It was discovered that the Reliable Datagram Socket (RDS) implementation in the Linux kernel contained an out-of-bounds during RDMA page allocation. An attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2018-5332) Mohamed Ghannam discovered a NULL pointer dereference in the RDS (Reliable Datagram Sockets) protocol implementation of the Linux kernel. A local attacker could use this to cause a denial of service (system crash). (CVE-2018-5333) Fan Long Fei discovered that a race condition existed in loop block device implementation in the Linux kernel. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2018-5344). Note that Tenable Network Security has extracted the preceding description block directly from the Ubuntu security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen 2018-04-06
    modified 2018-04-05
    plugin id 108840
    published 2018-04-05
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=108840
    title Ubuntu 17.10 : linux-raspi2 vulnerabilities (USN-3617-3)
  • NASL family Fedora Local Security Checks
    NASL id FEDORA_2017-31D7720D7E.NASL
    description The 4.13.12 update contains a number of important fixes across the tree. It contains security fixes for CVE-2017-16532 and CVE-2017-16538. Note that Tenable Network Security has extracted the preceding description block directly from the Fedora update system website. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen 2018-02-02
    modified 2018-02-01
    plugin id 104536
    published 2017-11-14
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=104536
    title Fedora 26 : kernel (2017-31d7720d7e)
  • NASL family Huawei Local Security Checks
    NASL id EULEROS_SA-2017-1291.NASL
    description According to the versions of the kernel packages installed, the EulerOS installation on the remote host is affected by the following vulnerabilities : - A vulnerability was found in the key management subsystem of the Linux kernel. An update on an uninstantiated key could cause a kernel panic, leading to denial of service (DoS).(CVE-2017-15299) - The usb_serial_console_disconnect function in drivers/usb/serial/console.c in the Linux kernel before 4.13.8 allows local users to cause a denial of service (use-after-free and system crash) or possibly have unspecified other impact via a crafted USB device, related to disconnection and failed setup.(CVE-2017-16525) - drivers/uwb/uwbd.c in the Linux kernel before 4.13.6 allows local users to cause a denial of service (general protection fault and system crash) or possibly have unspecified other impact via a crafted USB device.(CVE-2017-16526) - drivers/usb/core/config.c in the Linux kernel before 4.13.6 allows local users to cause a denial of service (out-of-bounds read and system crash) or possibly have unspecified other impact via a crafted USB device, related to the USB_DT_INTERFACE_ASSOCIATION descriptor.(CVE-2017-16531) - The get_endpoints function in drivers/usb/misc/usbtest.c in the Linux kernel through 4.13.11 allows local users to cause a denial of service (NULL pointer dereference and system crash) or possibly have unspecified other impact via a crafted USB device.(CVE-2017-16532) - The usbhid_parse function in drivers/hid/usbhid/hid-core.c in the Linux kernel before 4.13.8 allows local users to cause a denial of service (out-of-bounds read and system crash) or possibly have unspecified other impact via a crafted USB device.(CVE-2017-16533) - The uas driver in the Linux kernel before 4.13.6 allows local users to cause a denial of service (out-of-bounds read and system crash) or possibly have unspecified other impact via a crafted USB device, related to drivers/usb/storage/uas-detect.h and drivers/usb/storage/uas.c.(CVE-2017-16530) - The usb_get_bos_descriptor function in drivers/usb/core/config.c in the Linux kernel before 4.13.10 allows local users to cause a denial of service (out-of-bounds read and system crash) or possibly have unspecified other impact via a crafted USB device.(CVE-2017-16535) - A flaw was found that sound/core/timer.c in the Linux kernel before 4.11.5 is vulnerable to a data race in the ALSA /dev/snd/timer driver resulting in local users being able to read information belonging to other users. Uninitialized memory contents may be disclosed when a read and an ioctl happen at the same time.(CVE-2017-1000380) - The imon_probe function in drivers/media/rc/imon.c in the Linux kernel through 4.13.11 allows local users to cause a denial of service (NULL pointer dereference and system crash) or possibly have unspecified other impact via a crafted USB device.(CVE-2017-16537) - drivers/media/usb/dvb-usb-v2/lmedm04.c in the Linux kernel through 4.13.11 allows local users to cause a denial of service (general protection fault and system crash) or possibly have unspecified other impact via a crafted USB device, related to a missing warm-start check and incorrect attach timing (dm04_lme2510_frontend_attach versus dm04_lme2510_tuner).(CVE-2017-16538) - The cx231xx_usb_probe function in drivers/media/usb/cx231xx/cx231xx-cards.c in the Linux kernel through 4.13.11 allows local users to cause a denial of service (NULL pointer dereference and system crash) or possibly have unspecified other impact via a crafted USB device.(CVE-2017-16536) - The ims_pcu_get_cdc_union_desc function in drivers/input/misc/ims-pcu.c in the Linux kernel through 4.13.11 allows local users to cause a denial of service (ims_pcu_parse_cdc_data out-of-bounds read and system crash) or possibly have unspecified other impact via a crafted USB device.(CVE-2017-16645) - The parse_hid_report_descriptor function in drivers/input/tablet/gtco.c in the Linux kernel before 4.13.11 allows local users to cause a denial of service (out-of-bounds read and system crash) or possibly have unspecified other impact via a crafted USB device.(CVE-2017-16643) - The hdpvr_probe function in drivers/media/usb/hdpvr/hdpvr-core.c in the Linux kernel through 4.13.11 allows local users to cause a denial of service (improper error handling and system crash) or possibly have unspecified other impact via a crafted USB device.(CVE-2017-16644) - The cdc_parse_cdc_header function in drivers/usb/core/message.c in the Linux kernel before 4.13.6 allows local users to cause a denial of service (out-of-bounds read and system crash) or possibly have unspecified other impact via a crafted USB device.(CVE-2017-16534) - The qmi_wwan_bind function in drivers/net/usb/qmi_wwan.c in the Linux kernel through 4.13.11 allows local users to cause a denial of service (divide-by-zero error and system crash) or possibly have unspecified other impact via a crafted USB device.(CVE-2017-16650) - The usbnet_generic_cdc_bind function in drivers/net/usb/cdc_ether.c in the Linux kernel through 4.13.11 allows local users to cause a denial of service (divide-by-zero error and system crash) or possibly have unspecified other impact via a crafted USB device.(CVE-2017-16649) - The snd_usb_create_streams function in sound/usb/card.c in the Linux kernel before 4.13.6 allows local users to cause a denial of service (out-of-bounds read and system crash) or possibly have unspecified other impact via a crafted USB device.(CVE-2017-16529) Note that Tenable Network Security has extracted the preceding description block directly from the EulerOS security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen 2018-08-11
    modified 2018-08-10
    plugin id 104910
    published 2017-12-01
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=104910
    title EulerOS 2.0 SP1 : kernel (EulerOS-SA-2017-1291)
  • NASL family Oracle Linux Local Security Checks
    NASL id ORACLELINUX_ELSA-2018-4109.NASL
    description The remote Oracle Linux host is missing a security update for the Unbreakable Enterprise kernel package(s).
    last seen 2018-07-18
    modified 2018-07-16
    plugin id 109829
    published 2018-05-16
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=109829
    title Oracle Linux 6 / 7 : Unbreakable Enterprise kernel (ELSA-2018-4109) (Meltdown) (Spectre)
  • NASL family PhotonOS Local Security Checks
    NASL id PHOTONOS_PHSA-2017-0049.NASL
    description An update of [linux] packages forhotonOS has been released.
    last seen 2018-08-18
    modified 2018-08-17
    plugin id 111898
    published 2018-08-17
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=111898
    title Photon OS 1.0: Linux PHSA-2017-0049
  • NASL family Oracle Linux Local Security Checks
    NASL id ORACLELINUX_ELSA-2018-4110.NASL
    description The remote Oracle Linux host is missing a security update for the Unbreakable Enterprise kernel package(s).
    last seen 2018-07-18
    modified 2018-07-16
    plugin id 109881
    published 2018-05-17
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=109881
    title Oracle Linux 6 : Unbreakable Enterprise kernel (ELSA-2018-4110) (Meltdown) (Spectre)
  • NASL family Ubuntu Local Security Checks
    NASL id UBUNTU_USN-3619-2.NASL
    description USN-3619-1 fixed vulnerabilities in the Linux kernel for Ubuntu 16.04 LTS. This update provides the corresponding updates for the Linux Hardware Enablement (HWE) kernel from Ubuntu 16.04 LTS for Ubuntu 14.04 LTS. Jann Horn discovered that the Berkeley Packet Filter (BPF) implementation in the Linux kernel improperly performed sign extension in some situations. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-16995) It was discovered that a race condition leading to a use-after-free vulnerability existed in the ALSA PCM subsystem of the Linux kernel. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-0861) It was discovered that the KVM implementation in the Linux kernel allowed passthrough of the diagnostic I/O port 0x80. An attacker in a guest VM could use this to cause a denial of service (system crash) in the host OS. (CVE-2017-1000407) It was discovered that an information disclosure vulnerability existed in the ACPI implementation of the Linux kernel. A local attacker could use this to expose sensitive information (kernel memory addresses). (CVE-2017-11472) It was discovered that a use-after-free vulnerability existed in the network namespaces implementation in the Linux kernel. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-15129) It was discovered that the Advanced Linux Sound Architecture (ALSA) subsystem in the Linux kernel contained a use-after-free when handling device removal. A physically proximate attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-16528) Andrey Konovalov discovered that the usbtest device driver in the Linux kernel did not properly validate endpoint metadata. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16532) Andrey Konovalov discovered that the Conexant cx231xx USB video capture driver in the Linux kernel did not properly validate interface descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16536) Andrey Konovalov discovered that the SoundGraph iMON USB driver in the Linux kernel did not properly validate device metadata. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16537) Andrey Konovalov discovered that the IMS Passenger Control Unit USB driver in the Linux kernel did not properly validate device descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16645) Andrey Konovalov discovered that the DiBcom DiB0700 USB DVB driver in the Linux kernel did not properly handle detach events. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16646) Andrey Konovalov discovered that the CDC USB Ethernet driver did not properly validate device descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16649) Andrey Konovalov discovered that the QMI WWAN USB driver did not properly validate device descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16650) It was discovered that the USB Virtual Host Controller Interface (VHCI) driver in the Linux kernel contained an information disclosure vulnerability. A physically proximate attacker could use this to expose sensitive information (kernel memory). (CVE-2017-16911) It was discovered that the USB over IP implementation in the Linux kernel did not validate endpoint numbers. A remote attacker could use this to cause a denial of service (system crash). (CVE-2017-16912) It was discovered that the USB over IP implementation in the Linux kernel did not properly validate CMD_SUBMIT packets. A remote attacker could use this to cause a denial of service (excessive memory consumption). (CVE-2017-16913) It was discovered that the USB over IP implementation in the Linux kernel contained a NULL pointer dereference error. A remote attacker could use this to cause a denial of service (system crash). (CVE-2017-16914) It was discovered that the HugeTLB component of the Linux kernel did not properly handle holes in hugetlb ranges. A local attacker could use this to expose sensitive information (kernel memory). (CVE-2017-16994) It was discovered that the netfilter component of the Linux did not properly restrict access to the connection tracking helpers list. A local attacker could use this to bypass intended access restrictions. (CVE-2017-17448) It was discovered that the netlink subsystem in the Linux kernel did not properly restrict observations of netlink messages to the appropriate net namespace. A local attacker could use this to expose sensitive information (kernel netlink traffic). (CVE-2017-17449) It was discovered that the netfilter passive OS fingerprinting (xt_osf) module did not properly perform access control checks. A local attacker could improperly modify the system-wide OS fingerprint list. (CVE-2017-17450) It was discovered that the core USB subsystem in the Linux kernel did not validate the number of configurations and interfaces in a device. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-17558) Dmitry Vyukov discovered that the KVM implementation in the Linux kernel contained an out-of-bounds read when handling memory-mapped I/O. A local attacker could use this to expose sensitive information. (CVE-2017-17741) It was discovered that the Salsa20 encryption algorithm implementations in the Linux kernel did not properly handle zero-length inputs. A local attacker could use this to cause a denial of service (system crash). (CVE-2017-17805) It was discovered that the HMAC implementation did not validate the state of the underlying cryptographic hash algorithm. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-17806) It was discovered that the keyring implementation in the Linux kernel did not properly check permissions when a key request was performed on a task's default keyring. A local attacker could use this to add keys to unauthorized keyrings. (CVE-2017-17807) Alexei Starovoitov discovered that the Berkeley Packet Filter (BPF) implementation in the Linux kernel contained a branch-pruning logic issue around unreachable code. A local attacker could use this to cause a denial of service. (CVE-2017-17862) It was discovered that the parallel cryptography component of the Linux kernel incorrectly freed kernel memory. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-18075) It was discovered that a race condition existed in the Device Mapper component of the Linux kernel. A local attacker could use this to cause a denial of service (system crash). (CVE-2017-18203) It was discovered that a race condition existed in the OCFS2 file system implementation in the Linux kernel. A local attacker could use this to cause a denial of service (kernel deadlock). (CVE-2017-18204) It was discovered that an infinite loop could occur in the the madvise(2) implementation in the Linux kernel in certain circumstances. A local attacker could use this to cause a denial of service (system hang). (CVE-2017-18208) Andy Lutomirski discovered that the KVM implementation in the Linux kernel was vulnerable to a debug exception error when single-stepping through a syscall. A local attacker in a non-Linux guest vm could possibly use this to gain administrative privileges in the guest vm. (CVE-2017-7518) It was discovered that the Broadcom NetXtremeII ethernet driver in the Linux kernel did not properly validate Generic Segment Offload (GSO) packet sizes. An attacker could use this to cause a denial of service (interface unavailability). (CVE-2018-1000026) It was discovered that the Reliable Datagram Socket (RDS) implementation in the Linux kernel contained an out-of-bounds write during RDMA page allocation. An attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2018-5332) Mohamed Ghannam discovered a NULL pointer dereference in the RDS (Reliable Datagram Sockets) protocol implementation of the Linux kernel. A local attacker could use this to cause a denial of service (system crash). (CVE-2018-5333) Fan Long Fei discovered that a race condition existed in loop block device implementation in the Linux kernel. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2018-5344) It was discovered that an integer overflow error existed in the futex implementation in the Linux kernel. A local attacker could use this to cause a denial of service (system crash). (CVE-2018-6927) It was discovered that a NULL pointer dereference existed in the RDS (Reliable Datagram Sockets) protocol implementation in the Linux kernel. A local attacker could use this to cause a denial of service (system crash). (CVE-2018-7492) It was discovered that the Broadcom UniMAC MDIO bus controller driver in the Linux kernel did not properly validate device resources. A local attacker could use this to cause a denial of service (system crash). (CVE-2018-8043). Note that Tenable Network Security has extracted the preceding description block directly from the Ubuntu security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen 2018-07-30
    modified 2018-07-26
    plugin id 108878
    published 2018-04-06
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=108878
    title Ubuntu 14.04 LTS : linux-lts-xenial, linux-aws vulnerabilities (USN-3619-2)
  • NASL family OracleVM Local Security Checks
    NASL id ORACLEVM_OVMSA-2018-0035.NASL
    description The remote OracleVM system is missing necessary patches to address critical security updates : please see Oracle VM Security Advisory OVMSA-2018-0035 for details.
    last seen 2018-08-05
    modified 2018-08-03
    plugin id 109158
    published 2018-04-19
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=109158
    title OracleVM 3.4 : Unbreakable / etc (OVMSA-2018-0035) (Dirty COW) (Meltdown) (Spectre)
  • NASL family Ubuntu Local Security Checks
    NASL id UBUNTU_USN-3619-1.NASL
    description Jann Horn discovered that the Berkeley Packet Filter (BPF) implementation in the Linux kernel improperly performed sign extension in some situations. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-16995) It was discovered that a race condition leading to a use-after-free vulnerability existed in the ALSA PCM subsystem of the Linux kernel. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-0861) It was discovered that the KVM implementation in the Linux kernel allowed passthrough of the diagnostic I/O port 0x80. An attacker in a guest VM could use this to cause a denial of service (system crash) in the host OS. (CVE-2017-1000407) It was discovered that an information disclosure vulnerability existed in the ACPI implementation of the Linux kernel. A local attacker could use this to expose sensitive information (kernel memory addresses). (CVE-2017-11472) It was discovered that a use-after-free vulnerability existed in the network namespaces implementation in the Linux kernel. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-15129) It was discovered that the Advanced Linux Sound Architecture (ALSA) subsystem in the Linux kernel contained a use-after-free when handling device removal. A physically proximate attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-16528) Andrey Konovalov discovered that the usbtest device driver in the Linux kernel did not properly validate endpoint metadata. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16532) Andrey Konovalov discovered that the Conexant cx231xx USB video capture driver in the Linux kernel did not properly validate interface descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16536) Andrey Konovalov discovered that the SoundGraph iMON USB driver in the Linux kernel did not properly validate device metadata. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16537) Andrey Konovalov discovered that the IMS Passenger Control Unit USB driver in the Linux kernel did not properly validate device descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16645) Andrey Konovalov discovered that the DiBcom DiB0700 USB DVB driver in the Linux kernel did not properly handle detach events. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16646) Andrey Konovalov discovered that the CDC USB Ethernet driver did not properly validate device descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16649) Andrey Konovalov discovered that the QMI WWAN USB driver did not properly validate device descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16650) It was discovered that the USB Virtual Host Controller Interface (VHCI) driver in the Linux kernel contained an information disclosure vulnerability. A physically proximate attacker could use this to expose sensitive information (kernel memory). (CVE-2017-16911) It was discovered that the USB over IP implementation in the Linux kernel did not validate endpoint numbers. A remote attacker could use this to cause a denial of service (system crash). (CVE-2017-16912) It was discovered that the USB over IP implementation in the Linux kernel did not properly validate CMD_SUBMIT packets. A remote attacker could use this to cause a denial of service (excessive memory consumption). (CVE-2017-16913) It was discovered that the USB over IP implementation in the Linux kernel contained a NULL pointer dereference error. A remote attacker could use this to cause a denial of service (system crash). (CVE-2017-16914) It was discovered that the HugeTLB component of the Linux kernel did not properly handle holes in hugetlb ranges. A local attacker could use this to expose sensitive information (kernel memory). (CVE-2017-16994) It was discovered that the netfilter component of the Linux did not properly restrict access to the connection tracking helpers list. A local attacker could use this to bypass intended access restrictions. (CVE-2017-17448) It was discovered that the netlink subsystem in the Linux kernel did not properly restrict observations of netlink messages to the appropriate net namespace. A local attacker could use this to expose sensitive information (kernel netlink traffic). (CVE-2017-17449) It was discovered that the netfilter passive OS fingerprinting (xt_osf) module did not properly perform access control checks. A local attacker could improperly modify the system-wide OS fingerprint list. (CVE-2017-17450) It was discovered that the core USB subsystem in the Linux kernel did not validate the number of configurations and interfaces in a device. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-17558) Dmitry Vyukov discovered that the KVM implementation in the Linux kernel contained an out-of-bounds read when handling memory-mapped I/O. A local attacker could use this to expose sensitive information. (CVE-2017-17741) It was discovered that the Salsa20 encryption algorithm implementations in the Linux kernel did not properly handle zero-length inputs. A local attacker could use this to cause a denial of service (system crash). (CVE-2017-17805) It was discovered that the HMAC implementation did not validate the state of the underlying cryptographic hash algorithm. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-17806) It was discovered that the keyring implementation in the Linux kernel did not properly check permissions when a key request was performed on a task's' default keyring. A local attacker could use this to add keys to unauthorized keyrings. (CVE-2017-17807) Alexei Starovoitov discovered that the Berkeley Packet Filter (BPF) implementation in the Linux kernel contained a branch-pruning logic issue around unreachable code. A local attacker could use this to cause a denial of service. (CVE-2017-17862) It was discovered that the parallel cryptography component of the Linux kernel incorrectly freed kernel memory. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-18075) It was discovered that a race condition existed in the Device Mapper component of the Linux kernel. A local attacker could use this to cause a denial of service (system crash). (CVE-2017-18203) It was discovered that a race condition existed in the OCFS2 file system implementation in the Linux kernel. A local attacker could use this to cause a denial of service (kernel deadlock). (CVE-2017-18204) It was discovered that an infinite loop could occur in the the madvise(2) implementation in the Linux kernel in certain circumstances. A local attacker could use this to cause a denial of service (system hang). (CVE-2017-18208) Andy Lutomirski discovered that the KVM implementation in the Linux kernel was vulnerable to a debug exception error when single-stepping through a syscall. A local attacker in a non-Linux guest vm could possibly use this to gain administrative privileges in the guest vm. (CVE-2017-7518) It was discovered that the Broadcom NetXtremeII ethernet driver in the Linux kernel did not properly validate Generic Segment Offload (GSO) packet sizes. An attacker could use this to cause a denial of service (interface unavailability). (CVE-2018-1000026) It was discovered that the Reliable Datagram Socket (RDS) implementation in the Linux kernel contained an out-of-bounds write during RDMA page allocation. An attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2018-5332) Mohamed Ghannam discovered a NULL pointer dereference in the RDS (Reliable Datagram Sockets) protocol implementation of the Linux kernel. A local attacker could use this to cause a denial of service (system crash). (CVE-2018-5333) Fan Long Fei discovered that a race condition existed in loop block device implementation in the Linux kernel. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2018-5344) It was discovered that an integer overflow error existed in the futex implementation in the Linux kernel. A local attacker could use this to cause a denial of service (system crash). (CVE-2018-6927) It was discovered that a NULL pointer dereference existed in the RDS (Reliable Datagram Sockets) protocol implementation in the Linux kernel. A local attacker could use this to cause a denial of service (system crash). (CVE-2018-7492) It was discovered that the Broadcom UniMAC MDIO bus controller driver in the Linux kernel did not properly validate device resources. A local attacker could use this to cause a denial of service (system crash). (CVE-2018-8043). Note that Tenable Network Security has extracted the preceding description block directly from the Ubuntu security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen 2018-07-30
    modified 2018-07-26
    plugin id 108842
    published 2018-04-05
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=108842
    title Ubuntu 16.04 LTS : linux, linux-aws, linux-kvm, linux-raspi2, linux-snapdragon vulnerabilities (USN-3619-1)
  • NASL family Ubuntu Local Security Checks
    NASL id UBUNTU_USN-3617-2.NASL
    description USN-3617-1 fixed vulnerabilities in the Linux kernel for Ubuntu 17.10. This update provides the corresponding updates for the Linux Hardware Enablement (HWE) kernel from Ubuntu 17.10 for Ubuntu 16.04 LTS. It was discovered that a race condition leading to a use-after-free vulnerability existed in the ALSA PCM subsystem of the Linux kernel. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-0861) It was discovered that the KVM implementation in the Linux kernel allowed passthrough of the diagnostic I/O port 0x80. An attacker in a guest VM could use this to cause a denial of service (system crash) in the host OS. (CVE-2017-1000407) It was discovered that a use-after-free vulnerability existed in the network namespaces implementation in the Linux kernel. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-15129) Andrey Konovalov discovered that the usbtest device driver in the Linux kernel did not properly validate endpoint metadata. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16532) Andrey Konovalov discovered that the SoundGraph iMON USB driver in the Linux kernel did not properly validate device metadata. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16537) Andrey Konovalov discovered that the IMS Passenger Control Unit USB driver in the Linux kernel did not properly validate device descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16645) Andrey Konovalov discovered that the DiBcom DiB0700 USB DVB driver in the Linux kernel did not properly handle detach events. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16646) Andrey Konovalov discovered that the ASIX Ethernet USB driver in the Linux kernel did not properly handle suspend and resume events. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16647) Andrey Konovalov discovered that the CDC USB Ethernet driver did not properly validate device descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16649) Andrey Konovalov discovered that the QMI WWAN USB driver did not properly validate device descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16650) It was discovered that the HugeTLB component of the Linux kernel did not properly handle holes in hugetlb ranges. A local attacker could use this to expose sensitive information (kernel memory). (CVE-2017-16994) It was discovered that the netfilter component of the Linux did not properly restrict access to the connection tracking helpers list. A local attacker could use this to bypass intended access restrictions. (CVE-2017-17448) It was discovered that the netfilter passive OS fingerprinting (xt_osf) module did not properly perform access control checks. A local attacker could improperly modify the system-wide OS fingerprint list. (CVE-2017-17450) Dmitry Vyukov discovered that the KVM implementation in the Linux kernel contained an out-of-bounds read when handling memory-mapped I/O. A local attacker could use this to expose sensitive information. (CVE-2017-17741) It was discovered that the Salsa20 encryption algorithm implementations in the Linux kernel did not properly handle zero-length inputs. A local attacker could use this to cause a denial of service (system crash). (CVE-2017-17805) It was discovered that the HMAC implementation did not validate the state of the underlying cryptographic hash algorithm. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-17806) It was discovered that the keyring implementation in the Linux kernel did not properly check permissions when a key request was performed on a tasks' default keyring. A local attacker could use this to add keys to unauthorized keyrings. (CVE-2017-17807) It was discovered that a race condition existed in the OCFS2 file system implementation in the Linux kernel. A local attacker could use this to cause a denial of service (kernel deadlock). (CVE-2017-18204) It was discovered that the Broadcom NetXtremeII ethernet driver in the Linux kernel did not properly validate Generic Segment Offload (GSO) packet sizes. An attacker could use this to cause a denial of service (interface unavailability). (CVE-2018-1000026) It was discovered that the Reliable Datagram Socket (RDS) implementation in the Linux kernel contained an out-of-bounds during RDMA page allocation. An attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2018-5332) Mohamed Ghannam discovered a NULL pointer dereference in the RDS (Reliable Datagram Sockets) protocol implementation of the Linux kernel. A local attacker could use this to cause a denial of service (system crash). (CVE-2018-5333) Fan Long Fei discovered that a race condition existed in loop block device implementation in the Linux kernel. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2018-5344). Note that Tenable Network Security has extracted the preceding description block directly from the Ubuntu security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen 2018-04-06
    modified 2018-04-04
    plugin id 108835
    published 2018-04-04
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=108835
    title Ubuntu 16.04 LTS : linux-hwe, linux-gcp, linux-oem vulnerabilities (USN-3617-2)
  • NASL family Ubuntu Local Security Checks
    NASL id UBUNTU_USN-3617-1.NASL
    description It was discovered that a race condition leading to a use-after-free vulnerability existed in the ALSA PCM subsystem of the Linux kernel. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-0861) It was discovered that the KVM implementation in the Linux kernel allowed passthrough of the diagnostic I/O port 0x80. An attacker in a guest VM could use this to cause a denial of service (system crash) in the host OS. (CVE-2017-1000407) It was discovered that a use-after-free vulnerability existed in the network namespaces implementation in the Linux kernel. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-15129) Andrey Konovalov discovered that the usbtest device driver in the Linux kernel did not properly validate endpoint metadata. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16532) Andrey Konovalov discovered that the SoundGraph iMON USB driver in the Linux kernel did not properly validate device metadata. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16537) Andrey Konovalov discovered that the IMS Passenger Control Unit USB driver in the Linux kernel did not properly validate device descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16645) Andrey Konovalov discovered that the DiBcom DiB0700 USB DVB driver in the Linux kernel did not properly handle detach events. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16646) Andrey Konovalov discovered that the ASIX Ethernet USB driver in the Linux kernel did not properly handle suspend and resume events. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16647) Andrey Konovalov discovered that the CDC USB Ethernet driver did not properly validate device descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16649) Andrey Konovalov discovered that the QMI WWAN USB driver did not properly validate device descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16650) It was discovered that the HugeTLB component of the Linux kernel did not properly handle holes in hugetlb ranges. A local attacker could use this to expose sensitive information (kernel memory). (CVE-2017-16994) It was discovered that the netfilter component of the Linux did not properly restrict access to the connection tracking helpers list. A local attacker could use this to bypass intended access restrictions. (CVE-2017-17448) It was discovered that the netfilter passive OS fingerprinting (xt_osf) module did not properly perform access control checks. A local attacker could improperly modify the system-wide OS fingerprint list. (CVE-2017-17450) Dmitry Vyukov discovered that the KVM implementation in the Linux kernel contained an out-of-bounds read when handling memory-mapped I/O. A local attacker could use this to expose sensitive information. (CVE-2017-17741) It was discovered that the Salsa20 encryption algorithm implementations in the Linux kernel did not properly handle zero-length inputs. A local attacker could use this to cause a denial of service (system crash). (CVE-2017-17805) It was discovered that the HMAC implementation did not validate the state of the underlying cryptographic hash algorithm. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-17806) It was discovered that the keyring implementation in the Linux kernel did not properly check permissions when a key request was performed on a tasks' default keyring. A local attacker could use this to add keys to unauthorized keyrings. (CVE-2017-17807) It was discovered that a race condition existed in the OCFS2 file system implementation in the Linux kernel. A local attacker could use this to cause a denial of service (kernel deadlock). (CVE-2017-18204) It was discovered that the Broadcom NetXtremeII ethernet driver in the Linux kernel did not properly validate Generic Segment Offload (GSO) packet sizes. An attacker could use this to cause a denial of service (interface unavailability). (CVE-2018-1000026) It was discovered that the Reliable Datagram Socket (RDS) implementation in the Linux kernel contained an out-of-bounds during RDMA page allocation. An attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2018-5332) Mohamed Ghannam discovered a NULL pointer dereference in the RDS (Reliable Datagram Sockets) protocol implementation of the Linux kernel. A local attacker could use this to cause a denial of service (system crash). (CVE-2018-5333) Fan Long Fei discovered that a race condition existed in loop block device implementation in the Linux kernel. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2018-5344). Note that Tenable Network Security has extracted the preceding description block directly from the Ubuntu security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen 2018-04-06
    modified 2018-04-04
    plugin id 108834
    published 2018-04-04
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=108834
    title Ubuntu 17.10 : linux vulnerabilities (USN-3617-1)
  • NASL family Debian Local Security Checks
    NASL id DEBIAN_DLA-1200.NASL
    description Several vulnerabilities have been discovered in the Linux kernel that may lead to a privilege escalation, denial of service or information leaks. CVE-2016-10208 Sergej Schumilo and Ralf Spenneberg discovered that a crafted ext4 filesystem could trigger memory corruption when it is mounted. A user that can provide a device or filesystem image to be mounted could use this for denial of service (crash or data corruption) or possibly for privilege escalation. CVE-2017-8824 Mohamed Ghannam discovered that the DCCP implementation did not correctly manage resources when a socket is disconnected and reconnected, potentially leading to a use-after-free. A local user could use this for denial of service (crash or data corruption) or possibly for privilege escalation. On systems that do not already have the dccp module loaded, this can be mitigated by disabling it: echo >> /etc/modprobe.d/disable-dccp.conf install dccp false CVE-2017-8831 Pengfei Wang discovered that the saa7164 video capture driver re-reads data from a PCI device after validating it. A physically present user able to attach a specially designed PCI device could use this for privilege escalation. CVE-2017-12190 Vitaly Mayatskikh discovered that the block layer did not correctly count page references for raw I/O from user-space. This can be exploited by a guest VM with access to a host SCSI device for denial of service (memory exhaustion) or potentially for privilege escalation. CVE-2017-13080 A vulnerability was found in the WPA2 protocol that could lead to reinstallation of the same Group Temporal Key (GTK), which substantially reduces the security of wifi encryption. This is one of the issues collectively known as 'KRACK'. Updates to GTKs are usually handled by the wpa package, where this issue was already fixed (DLA-1150-1). However, some wifi devices can remain active and update GTKs autonomously while the system is suspended. The kernel must also check for and ignore key reinstallation. CVE-2017-14051 'shqking' reported that the qla2xxx SCSI host driver did not correctly validate I/O to the 'optrom' sysfs attribute of the devices it creates. This is unlikely to have any security impact. CVE-2017-15115 Vladis Dronov reported that the SCTP implementation did not correctly handle 'peel-off' of an association to another net namespace. This leads to a use-after-free, which a local user can exploit for denial of service (crash or data corruption) or possibly for privilege escalation. On systems that do not already have the sctp module loaded, this can be mitigated by disabling it: echo >> /etc/modprobe.d/disable-sctp.conf install sctp false CVE-2017-15265 Michael23 Yu reported a race condition in the ALSA sequencer subsystem involving creation and deletion of ports, which could lead to a use-after-free. A local user with access to an ALSA sequencer device can use this for denial of service (crash or data loss) or possibly for privilege escalation. CVE-2017-15299 Eric Biggers discovered that the KEYS subsystem did not correctly handle update of an uninstantiated key, leading to a null dereference. A local user can use this for denial of service (crash). CVE-2017-15649 'nixioaming' reported a race condition in the packet socket (AF_PACKET) implementation involving rebinding to a fanout group, which could lead to a use-after-free. A local user with the CAP_NET_RAW capability can use this for denial of service (crash or data corruption) or possibly for privilege escalation. CVE-2017-15868 Al Viro found that the Bluebooth Network Encapsulation Protocol (BNEP) implementation did not validate the type of the second socket passed to the BNEPCONNADD ioctl(), which could lead to memory corruption. A local user with the CAP_NET_ADMIN capability can use this for denial of service (crash or data corruption) or possibly for privilege escalation. CVE-2017-16525 Andrey Konovalov reported that the USB serial console implementation did not correctly handle disconnection of unusual serial devices, leading to a use-after-free. A similar issue was found in the case where setup of a serial console fails. A physically present user with a specially designed USB device can use this to cause a denial of service (crash or data corruption) or possibly for privilege escalation. CVE-2017-16527 Andrey Konovalov reported that the USB sound mixer driver did not correctly cancel I/O in case it failed to probe a device, which could lead to a use-after-free. A physically present user with a specially designed USB device can use this to cause a denial of service (crash or data corruption) or possibly for privilege escalation. CVE-2017-16529 Andrey Konovalov reported that the USB sound driver did not fully validate descriptor lengths, which could lead to a buffer over-read. A physically present user with a specially designed USB device may be able to use this to cause a denial of service (crash). CVE-2017-16531 Andrey Konovalov reported that the USB core did not validate IAD lengths, which could lead to a buffer over-read. A physically present user with a specially designed USB device may be able to use this to cause a denial of service (crash). CVE-2017-16532 Andrey Konovalov reported that the USB test driver did not correctly handle devices with specific combinations of endpoints. A physically present user with a specially designed USB device can use this to cause a denial of service (crash). CVE-2017-16533 Andrey Konovalov reported that the USB HID driver did not fully validate descriptor lengths, which could lead to a buffer over-read. A physically present user with a specially designed USB device may be able to use this to cause a denial of service (crash). CVE-2017-16535 Andrey Konovalov reported that the USB core did not validate BOS descriptor lengths, which could lead to a buffer over-read. A physically present user with a specially designed USB device may be able to use this to cause a denial of service (crash). CVE-2017-16536 Andrey Konovalov reported that the cx231xx video capture driver did not fully validate the device endpoint configuration, which could lead to a null dereference. A physically present user with a specially designed USB device can use this to cause a denial of service (crash). CVE-2017-16537 Andrey Konovalov reported that the imon RC driver did not fully validate the device interface configuration, which could lead to a null dereference. A physically present user with a specially designed USB device can use this to cause a denial of service (crash). CVE-2017-16643 Andrey Konovalov reported that the gtco tablet driver did not fully validate descriptor lengths, which could lead to a buffer over-read. A physically present user with a specially designed USB device may be able to use this to cause a denial of service (crash). CVE-2017-16649 Bjørn Mork found that the cdc_ether network driver did not validate the device's maximum segment size, potentially leading to a division by zero. A physically present user with a specially designed USB device can use this to cause a denial of service (crash). CVE-2017-16939 Mohamed Ghannam reported (through Beyond Security's SecuriTeam Secure Disclosure program) that the IPsec (xfrm) implementation did not correctly handle some failure cases when dumping policy information through netlink. A local user with the CAP_NET_ADMIN capability can use this for denial of service (crash or data corruption) or possibly for privilege escalation. CVE-2017-1000407 Andrew Honig reported that the KVM implementation for Intel processors allowed direct access to host I/O port 0x80, which is not generally safe. On some systems this allows a guest VM to cause a denial of service (crash) of the host. For Debian 7 'Wheezy', these problems have been fixed in version 3.2.96-2. This version also includes bug fixes from upstream versions up to and including 3.2.96. It also fixes some regressions caused by the fix for CVE-2017-1000364, which was included in DLA-993-1. We recommend that you upgrade your linux packages. NOTE: Tenable Network Security has extracted the preceding description block directly from the DLA security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen 2018-07-07
    modified 2018-07-06
    plugin id 105116
    published 2017-12-11
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=105116
    title Debian DLA-1200-1 : linux security update (KRACK)
  • NASL family Huawei Local Security Checks
    NASL id EULEROS_SA-2017-1292.NASL
    description According to the versions of the kernel packages installed, the EulerOS installation on the remote host is affected by the following vulnerabilities : - A vulnerability was found in the key management subsystem of the Linux kernel. An update on an uninstantiated key could cause a kernel panic, leading to denial of service (DoS).(CVE-2017-15299) - It was found that fanout_add() in 'net/packet/af_packet.c' in the Linux kernel, before version 4.13.6, allows local users to gain privileges via crafted system calls that trigger mishandling of packet_fanout data structures, because of a race condition (involving fanout_add and packet_do_bind) that leads to a use-after-free bug.(CVE-2017-15649) - The keyctl_read_key function in security/keys/keyctl.c in the Key Management subcomponent in the Linux kernel before 4.13.5 does not properly consider that a key may be possessed but negatively instantiated, which allows local users to cause a denial of service (OOPS and system crash) via a crafted KEYCTL_READ operation.(CVE-2017-12192) - The Linux kernel built with the KVM visualization support (CONFIG_KVM), with nested visualization(nVMX) feature enabled (nested=1), was vulnerable to a stack buffer overflow issue. The vulnerability could occur while traversing guest page table entries to resolve guest virtual address(gva). An L1 guest could use this flaw to crash the host kernel resulting in denial of service (DoS) or potentially execute arbitrary code on the host to gain privileges on the system.(CVE-2017-12188) - The imon_probe function in drivers/media/rc/imon.c in the Linux kernel through 4.13.11 allows local users to cause a denial of service (NULL pointer dereference and system crash) or possibly have unspecified other impact via a crafted USB device.(CVE-2017-16537) - drivers/media/usb/dvb-usb-v2/lmedm04.c in the Linux kernel through 4.13.11 allows local users to cause a denial of service (general protection fault and system crash) or possibly have unspecified other impact via a crafted USB device, related to a missing warm-start check and incorrect attach timing (dm04_lme2510_frontend_attach versus dm04_lme2510_tuner).(CVE-2017-16538) - The cx231xx_usb_probe function in drivers/media/usb/cx231xx/cx231xx-cards.c in the Linux kernel through 4.13.11 allows local users to cause a denial of service (NULL pointer dereference and system crash) or possibly have unspecified other impact via a crafted USB device.(CVE-2017-16536) - The usb_get_bos_descriptor function in drivers/usb/core/config.c in the Linux kernel before 4.13.10 allows local users to cause a denial of service (out-of-bounds read and system crash) or possibly have unspecified other impact via a crafted USB device.(CVE-2017-16535) - The cdc_parse_cdc_header function in drivers/usb/core/message.c in the Linux kernel before 4.13.6 allows local users to cause a denial of service (out-of-bounds read and system crash) or possibly have unspecified other impact via a crafted USB device.(CVE-2017-16534) - The usbhid_parse function in drivers/hid/usbhid/hid-core.c in the Linux kernel before 4.13.8 allows local users to cause a denial of service (out-of-bounds read and system crash) or possibly have unspecified other impact via a crafted USB device.(CVE-2017-16533) - The get_endpoints function in drivers/usb/misc/usbtest.c in the Linux kernel through 4.13.11 allows local users to cause a denial of service (NULL pointer dereference and system crash) or possibly have unspecified other impact via a crafted USB device.(CVE-2017-16532) - drivers/usb/core/config.c in the Linux kernel before 4.13.6 allows local users to cause a denial of service (out-of-bounds read and system crash) or possibly have unspecified other impact via a crafted USB device, related to the USB_DT_INTERFACE_ASSOCIATION descriptor.(CVE-2017-16531) - The uas driver in the Linux kernel before 4.13.6 allows local users to cause a denial of service (out-of-bounds read and system crash) or possibly have unspecified other impact via a crafted USB device, related to drivers/usb/storage/uas-detect.h and drivers/usb/storage/uas.c.(CVE-2017-16530) - The snd_usb_create_streams function in sound/usb/card.c in the Linux kernel before 4.13.6 allows local users to cause a denial of service (out-of-bounds read and system crash) or possibly have unspecified other impact via a crafted USB device.(CVE-2017-16529) - sound/core/seq_device.c in the Linux kernel before 4.13.4 allows local users to cause a denial of service (snd_rawmidi_dev_seq_free use-after-free and system crash) or possibly have unspecified other impact via a crafted USB device.(CVE-2017-16528) - sound/usb/mixer.c in the Linux kernel before 4.13.8 allows local users to cause a denial of service (snd_usb_mixer_interrupt use-after-free and system crash) or possibly have unspecified other impact via a crafted USB device.(CVE-2017-16527) - drivers/uwb/uwbd.c in the Linux kernel before 4.13.6 allows local users to cause a denial of service (general protection fault and system crash) or possibly have unspecified other impact via a crafted USB device.(CVE-2017-16526) - The usb_serial_console_disconnect function in drivers/usb/serial/console.c in the Linux kernel before 4.13.8 allows local users to cause a denial of service (use-after-free and system crash) or possibly have unspecified other impact via a crafted USB device, related to disconnection and failed setup.(CVE-2017-16525) Note that Tenable Network Security has extracted the preceding description block directly from the EulerOS security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen 2018-08-11
    modified 2018-08-10
    plugin id 104911
    published 2017-12-01
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=104911
    title EulerOS 2.0 SP2 : kernel (EulerOS-SA-2017-1292)
  • NASL family Oracle Linux Local Security Checks
    NASL id ORACLELINUX_ELSA-2018-4071.NASL
    description The remote Oracle Linux host is missing a security update for the Unbreakable Enterprise kernel package(s).
    last seen 2018-08-05
    modified 2018-08-03
    plugin id 109156
    published 2018-04-19
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=109156
    title Oracle Linux 6 / 7 : Unbreakable Enterprise kernel (ELSA-2018-4071) (Dirty COW) (Meltdown) (Spectre)
  • NASL family PhotonOS Local Security Checks
    NASL id PHOTONOS_PHSA-2017-0050.NASL
    description An update of [curl,libtiff,linux] packages for PhotonOS has been released.
    last seen 2018-08-18
    modified 2018-08-17
    plugin id 111899
    published 2018-08-17
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=111899
    title Photon OS 2.0: Curl / Libtiff / Linux PHSA-2017-0050
refmap via4
misc
mlist [debian-lts-announce] 20171210 [SECURITY] [DLA 1200-1] linux security update
ubuntu
  • USN-3617-1
  • USN-3617-2
  • USN-3617-3
  • USN-3619-1
  • USN-3619-2
Last major update 03-11-2017 - 21:29
Published 03-11-2017 - 21:29
Last modified 06-04-2018 - 21:29
Back to Top