ID CVE-2013-6382
Summary Multiple buffer underflows in the XFS implementation in the Linux kernel through 3.12.1 allow local users to cause a denial of service (memory corruption) or possibly have unspecified other impact by leveraging the CAP_SYS_ADMIN capability for a (1) XFS_IOC_ATTRLIST_BY_HANDLE or (2) XFS_IOC_ATTRLIST_BY_HANDLE_32 ioctl call with a crafted length value, related to the xfs_attrlist_by_handle function in fs/xfs/xfs_ioctl.c and the xfs_compat_attrlist_by_handle function in fs/xfs/xfs_ioctl32.c.
References
Vulnerable Configurations
  • Linux Kernel 3.12.1
    cpe:2.3:o:linux:linux_kernel:3.12.1
  • Linux Kernel 3.12
    cpe:2.3:o:linux:linux_kernel:3.12
  • Linux Kernel 3.11.7
    cpe:2.3:o:linux:linux_kernel:3.11.7
  • Linux Kernel 3.10.18
    cpe:2.3:o:linux:linux_kernel:3.10.18
  • Linux Kernel 3.10.17
    cpe:2.3:o:linux:linux_kernel:3.10.17
  • Linux Kernel 3.10.16
    cpe:2.3:o:linux:linux_kernel:3.10.16
  • Linux Kernel 3.10.15
    cpe:2.3:o:linux:linux_kernel:3.10.15
  • Linux Kernel 3.10.14
    cpe:2.3:o:linux:linux_kernel:3.10.14
  • Linux Kernel 3.10.13
    cpe:2.3:o:linux:linux_kernel:3.10.13
  • Linux Kernel 3.10.1
    cpe:2.3:o:linux:linux_kernel:3.10.1
  • Linux Kernel 3.10.10
    cpe:2.3:o:linux:linux_kernel:3.10.10
  • Linux Kernel 3.10.11
    cpe:2.3:o:linux:linux_kernel:3.10.11
  • Linux Kernel 3.10.2
    cpe:2.3:o:linux:linux_kernel:3.10.12
  • Linux Kernel 3.10.2
    cpe:2.3:o:linux:linux_kernel:3.10.2
  • Linux Kernel 3.10.3
    cpe:2.3:o:linux:linux_kernel:3.10.3
  • Linux Kernel 3.10.4
    cpe:2.3:o:linux:linux_kernel:3.10.4
  • Linux Kernel 3.10.5
    cpe:2.3:o:linux:linux_kernel:3.10.5
  • Linux Kernel 3.10.6
    cpe:2.3:o:linux:linux_kernel:3.10.6
  • Linux Kernel 3.10.7
    cpe:2.3:o:linux:linux_kernel:3.10.7
  • Linux Kernel 3.10.8
    cpe:2.3:o:linux:linux_kernel:3.10.8
  • Linux Kernel 3.10.9
    cpe:2.3:o:linux:linux_kernel:3.10.9
  • Linux Kernel 3.11
    cpe:2.3:o:linux:linux_kernel:3.11
  • Linux Kernel 3.11.1
    cpe:2.3:o:linux:linux_kernel:3.11.1
  • Linux Kernel 3.11.2
    cpe:2.3:o:linux:linux_kernel:3.11.2
  • Linux Kernel 3.11.3
    cpe:2.3:o:linux:linux_kernel:3.11.3
  • Linux Kernel 3.11.4
    cpe:2.3:o:linux:linux_kernel:3.11.4
  • Linux Kernel 3.11.5
    cpe:2.3:o:linux:linux_kernel:3.11.5
  • Linux Kernel 3.11.6
    cpe:2.3:o:linux:linux_kernel:3.11.6
  • Linux Kernel 3.0 release candidate 1
    cpe:2.3:o:linux:linux_kernel:3.0:rc1
  • Linux Kernel 3.0 release candidate 2
    cpe:2.3:o:linux:linux_kernel:3.0:rc2
  • Linux Kernel 3.0 release candidate 3
    cpe:2.3:o:linux:linux_kernel:3.0:rc3
  • Linux Kernel 3.0 release candidate 4
    cpe:2.3:o:linux:linux_kernel:3.0:rc4
  • Linux Kernel 3.0 release candidate 5
    cpe:2.3:o:linux:linux_kernel:3.0:rc5
  • Linux Kernel 3.0 release candidate 6
    cpe:2.3:o:linux:linux_kernel:3.0:rc6
  • Linux Kernel 3.0 release candidate 7
    cpe:2.3:o:linux:linux_kernel:3.0:rc7
  • Linux Kernel 3.0.1
    cpe:2.3:o:linux:linux_kernel:3.0.1
  • Linux Kernel 3.0.10
    cpe:2.3:o:linux:linux_kernel:3.0.10
  • Linux Kernel 3.0.11
    cpe:2.3:o:linux:linux_kernel:3.0.11
  • Linux Kernel 3.0.12
    cpe:2.3:o:linux:linux_kernel:3.0.12
  • Linux Kernel 3.0.13
    cpe:2.3:o:linux:linux_kernel:3.0.13
  • Linux Kernel 3.0.14
    cpe:2.3:o:linux:linux_kernel:3.0.14
  • Linux Kernel 3.0.15
    cpe:2.3:o:linux:linux_kernel:3.0.15
  • Linux Kernel 3.0.16
    cpe:2.3:o:linux:linux_kernel:3.0.16
  • Linux Kernel 3.0.17
    cpe:2.3:o:linux:linux_kernel:3.0.17
  • Linux Kernel 3.0.18
    cpe:2.3:o:linux:linux_kernel:3.0.18
  • Linux Kernel 3.0.19
    cpe:2.3:o:linux:linux_kernel:3.0.19
  • Linux Kernel 3.0.2
    cpe:2.3:o:linux:linux_kernel:3.0.2
  • Linux Kernel 3.0.20
    cpe:2.3:o:linux:linux_kernel:3.0.20
  • Linux Kernel 3.0.21
    cpe:2.3:o:linux:linux_kernel:3.0.21
  • Linux Kernel 3.0.22
    cpe:2.3:o:linux:linux_kernel:3.0.22
  • Linux Kernel 3.0.23
    cpe:2.3:o:linux:linux_kernel:3.0.23
  • Linux Kernel 3.0.24
    cpe:2.3:o:linux:linux_kernel:3.0.24
  • Linux Kernel 3.0.25
    cpe:2.3:o:linux:linux_kernel:3.0.25
  • Linux Kernel 3.0.26
    cpe:2.3:o:linux:linux_kernel:3.0.26
  • Linux Kernel 3.0.27
    cpe:2.3:o:linux:linux_kernel:3.0.27
  • Linux Kernel 3.0.28
    cpe:2.3:o:linux:linux_kernel:3.0.28
  • Linux Kernel 3.0.29
    cpe:2.3:o:linux:linux_kernel:3.0.29
  • Linux Kernel 3.0.3
    cpe:2.3:o:linux:linux_kernel:3.0.3
  • Linux Kernel 3.0.30
    cpe:2.3:o:linux:linux_kernel:3.0.30
  • Linux Kernel 3.0.31
    cpe:2.3:o:linux:linux_kernel:3.0.31
  • Linux Kernel 3.0.32
    cpe:2.3:o:linux:linux_kernel:3.0.32
  • Linux Kernel 3.0.33
    cpe:2.3:o:linux:linux_kernel:3.0.33
  • Linux Kernel 3.0.34
    cpe:2.3:o:linux:linux_kernel:3.0.34
  • Linux Kernel 3.0.35
    cpe:2.3:o:linux:linux_kernel:3.0.35
  • Linux Kernel 3.0.36
    cpe:2.3:o:linux:linux_kernel:3.0.36
  • Linux Kernel 3.0.37
    cpe:2.3:o:linux:linux_kernel:3.0.37
  • Linux Kernel 3.0.38
    cpe:2.3:o:linux:linux_kernel:3.0.38
  • Linux Kernel 3.0.39
    cpe:2.3:o:linux:linux_kernel:3.0.39
  • Linux Kernel 3.0.4
    cpe:2.3:o:linux:linux_kernel:3.0.4
  • Linux Kernel 3.0.40
    cpe:2.3:o:linux:linux_kernel:3.0.40
  • Linux Kernel 3.0.41
    cpe:2.3:o:linux:linux_kernel:3.0.41
  • Linux Kernel 3.0.42
    cpe:2.3:o:linux:linux_kernel:3.0.42
  • Linux Kernel 3.0.43
    cpe:2.3:o:linux:linux_kernel:3.0.43
  • Linux Kernel 3.0.44
    cpe:2.3:o:linux:linux_kernel:3.0.44
  • Linux Kernel 3.0.45
    cpe:2.3:o:linux:linux_kernel:3.0.45
  • Linux Kernel 3.0.46
    cpe:2.3:o:linux:linux_kernel:3.0.46
  • Linux Kernel 3.0.47
    cpe:2.3:o:linux:linux_kernel:3.0.47
  • Linux Kernel 3.0.48
    cpe:2.3:o:linux:linux_kernel:3.0.48
  • Linux Kernel 3.0.49
    cpe:2.3:o:linux:linux_kernel:3.0.49
  • Linux Kernel 3.0.5
    cpe:2.3:o:linux:linux_kernel:3.0.5
  • Linux Kernel 3.0.50
    cpe:2.3:o:linux:linux_kernel:3.0.50
  • Linux Kernel 3.0.51
    cpe:2.3:o:linux:linux_kernel:3.0.51
  • Linux Kernel 3.0.52
    cpe:2.3:o:linux:linux_kernel:3.0.52
  • Linux Kernel 3.0.53
    cpe:2.3:o:linux:linux_kernel:3.0.53
  • Linux Kernel 3.0.54
    cpe:2.3:o:linux:linux_kernel:3.0.54
  • Linux Kernel 3.0.55
    cpe:2.3:o:linux:linux_kernel:3.0.55
  • Linux Kernel 3.0.56
    cpe:2.3:o:linux:linux_kernel:3.0.56
  • Linux Kernel 3.0.57
    cpe:2.3:o:linux:linux_kernel:3.0.57
  • Linux Kernel 3.0.58
    cpe:2.3:o:linux:linux_kernel:3.0.58
  • Linux Kernel 3.0.59
    cpe:2.3:o:linux:linux_kernel:3.0.59
  • Linux Kernel 3.0.6
    cpe:2.3:o:linux:linux_kernel:3.0.6
  • Linux Kernel 3.0.60
    cpe:2.3:o:linux:linux_kernel:3.0.60
  • Linux Kernel 3.0.61
    cpe:2.3:o:linux:linux_kernel:3.0.61
  • Linux Kernel 3.0.62
    cpe:2.3:o:linux:linux_kernel:3.0.62
  • Linux Kernel 3.0.63
    cpe:2.3:o:linux:linux_kernel:3.0.63
  • Linux Kernel 3.0.64
    cpe:2.3:o:linux:linux_kernel:3.0.64
  • Linux Kernel 3.0.65
    cpe:2.3:o:linux:linux_kernel:3.0.65
  • Linux Kernel 3.0.66
    cpe:2.3:o:linux:linux_kernel:3.0.66
  • Linux Kernel 3.0.67
    cpe:2.3:o:linux:linux_kernel:3.0.67
  • Linux Kernel 3.0.68
    cpe:2.3:o:linux:linux_kernel:3.0.68
  • Linux Kernel 3.0.7
    cpe:2.3:o:linux:linux_kernel:3.0.7
  • Linux Kernel 3.0.8
    cpe:2.3:o:linux:linux_kernel:3.0.8
  • Linux Kernel 3.0.9
    cpe:2.3:o:linux:linux_kernel:3.0.9
  • Linux Kernel 3.1
    cpe:2.3:o:linux:linux_kernel:3.1
  • Linux Kernel 3.1 release candidate 1
    cpe:2.3:o:linux:linux_kernel:3.1:rc1
  • Linux Kernel 3.1 release candidate 2
    cpe:2.3:o:linux:linux_kernel:3.1:rc2
  • Linux Kernel 3.1 release candidate 3
    cpe:2.3:o:linux:linux_kernel:3.1:rc3
  • Linux Kernel 3.1 release candidate 4
    cpe:2.3:o:linux:linux_kernel:3.1:rc4
  • Linux Kernel 3.1.1
    cpe:2.3:o:linux:linux_kernel:3.1.1
  • Linux Kernel 3.1.10
    cpe:2.3:o:linux:linux_kernel:3.1.10
  • Linux Kernel 3.1.2
    cpe:2.3:o:linux:linux_kernel:3.1.2
  • Linux Kernel 3.1.3
    cpe:2.3:o:linux:linux_kernel:3.1.3
  • Linux Kernel 3.1.4
    cpe:2.3:o:linux:linux_kernel:3.1.4
  • Linux Kernel 3.1.5
    cpe:2.3:o:linux:linux_kernel:3.1.5
  • Linux Kernel 3.1.6
    cpe:2.3:o:linux:linux_kernel:3.1.6
  • Linux Kernel 3.1.7
    cpe:2.3:o:linux:linux_kernel:3.1.7
  • Linux Kernel 3.9.9
    cpe:2.3:o:linux:linux_kernel:3.9.9
  • Linux Kernel 3.9.8
    cpe:2.3:o:linux:linux_kernel:3.9.8
  • Linux Kernel 3.9.7
    cpe:2.3:o:linux:linux_kernel:3.9.7
  • Linux Kernel 3.9.6
    cpe:2.3:o:linux:linux_kernel:3.9.6
  • Linux Kernel 3.9.5
    cpe:2.3:o:linux:linux_kernel:3.9.5
  • Linux Kernel 3.9.4
    cpe:2.3:o:linux:linux_kernel:3.9.4
  • Linux Kernel 3.9.3
    cpe:2.3:o:linux:linux_kernel:3.9.3
  • Linux Kernel 3.2
    cpe:2.3:o:linux:linux_kernel:3.2
  • Linux Kernel 3.2 release candidate 2
    cpe:2.3:o:linux:linux_kernel:3.2:rc2
  • Linux Kernel 3.2 release candidate 3
    cpe:2.3:o:linux:linux_kernel:3.2:rc3
  • Linux Kernel 3.2 release candidate 4
    cpe:2.3:o:linux:linux_kernel:3.2:rc4
  • Linux Kernel 3.2 release candidate 5
    cpe:2.3:o:linux:linux_kernel:3.2:rc5
  • Linux Kernel 3.2 release candidate 6
    cpe:2.3:o:linux:linux_kernel:3.2:rc6
  • Linux Kernel 3.2 release candidate 7
    cpe:2.3:o:linux:linux_kernel:3.2:rc7
  • Linux Kernel 3.2.1
    cpe:2.3:o:linux:linux_kernel:3.2.1
  • Linux Kernel 3.2.10
    cpe:2.3:o:linux:linux_kernel:3.2.10
  • Linux Kernel 3.2.11
    cpe:2.3:o:linux:linux_kernel:3.2.11
  • Linux Kernel 3.2.12
    cpe:2.3:o:linux:linux_kernel:3.2.12
  • Linux Kernel 3.2.13
    cpe:2.3:o:linux:linux_kernel:3.2.13
  • Linux Kernel 3.2.14
    cpe:2.3:o:linux:linux_kernel:3.2.14
  • Linux Kernel 3.2.15
    cpe:2.3:o:linux:linux_kernel:3.2.15
  • Linux Kernel 3.2.16
    cpe:2.3:o:linux:linux_kernel:3.2.16
  • Linux Kernel 3.2.17
    cpe:2.3:o:linux:linux_kernel:3.2.17
  • Linux Kernel 3.2.18
    cpe:2.3:o:linux:linux_kernel:3.2.18
  • Linux Kernel 3.2.19
    cpe:2.3:o:linux:linux_kernel:3.2.19
  • Linux Kernel 3.2.2
    cpe:2.3:o:linux:linux_kernel:3.2.2
  • Linux Kernel 3.2.20
    cpe:2.3:o:linux:linux_kernel:3.2.20
  • Linux Kernel 3.2.21
    cpe:2.3:o:linux:linux_kernel:3.2.21
  • Linux Kernel 3.2.22
    cpe:2.3:o:linux:linux_kernel:3.2.22
  • Linux Kernel 3.2.23
    cpe:2.3:o:linux:linux_kernel:3.2.23
  • Linux Kernel 3.2.24
    cpe:2.3:o:linux:linux_kernel:3.2.24
  • Linux Kernel 3.2.25
    cpe:2.3:o:linux:linux_kernel:3.2.25
  • Linux Kernel 3.2.26
    cpe:2.3:o:linux:linux_kernel:3.2.26
  • Linux Kernel 3.2.27
    cpe:2.3:o:linux:linux_kernel:3.2.27
  • Linux Kernel 3.2.28
    cpe:2.3:o:linux:linux_kernel:3.2.28
  • Linux Kernel 3.2.29
    cpe:2.3:o:linux:linux_kernel:3.2.29
  • Linux Kernel 3.2.3
    cpe:2.3:o:linux:linux_kernel:3.2.3
  • Linux Kernel 3.2.30
    cpe:2.3:o:linux:linux_kernel:3.2.30
  • Linux Kernel 3.2.4
    cpe:2.3:o:linux:linux_kernel:3.2.4
  • Linux Kernel 3.2.5
    cpe:2.3:o:linux:linux_kernel:3.2.5
  • Linux Kernel 3.2.6
    cpe:2.3:o:linux:linux_kernel:3.2.6
  • Linux Kernel 3.2.7
    cpe:2.3:o:linux:linux_kernel:3.2.7
  • Linux Kernel 3.2.8
    cpe:2.3:o:linux:linux_kernel:3.2.8
  • Linux Kernel 3.2.9
    cpe:2.3:o:linux:linux_kernel:3.2.9
  • Linux Kernel 3.3
    cpe:2.3:o:linux:linux_kernel:3.3
  • Linux Kernel 3.3 release candidate 1
    cpe:2.3:o:linux:linux_kernel:3.3:rc1
  • Linux Kernel 3.3 release candidate 2
    cpe:2.3:o:linux:linux_kernel:3.3:rc2
  • Linux Kernel 3.3 release candidate 3
    cpe:2.3:o:linux:linux_kernel:3.3:rc3
  • Linux Kernel 3.3 release candidate 4
    cpe:2.3:o:linux:linux_kernel:3.3:rc4
  • Linux Kernel 3.3 release candidate 5
    cpe:2.3:o:linux:linux_kernel:3.3:rc5
  • Linux Kernel 3.3 release candidate 6
    cpe:2.3:o:linux:linux_kernel:3.3:rc6
  • Linux Kernel 3.3 release candidate 7
    cpe:2.3:o:linux:linux_kernel:3.3:rc7
  • Linux Kernel 3.3.1
    cpe:2.3:o:linux:linux_kernel:3.3.1
  • Linux Kernel 3.3.2
    cpe:2.3:o:linux:linux_kernel:3.3.2
  • Linux Kernel 3.3.3
    cpe:2.3:o:linux:linux_kernel:3.3.3
  • Linux Kernel 3.3.4
    cpe:2.3:o:linux:linux_kernel:3.3.4
  • Linux Kernel 3.3.5
    cpe:2.3:o:linux:linux_kernel:3.3.5
  • Linux Kernel 3.3.6
    cpe:2.3:o:linux:linux_kernel:3.3.6
  • Linux Kernel 3.3.7
    cpe:2.3:o:linux:linux_kernel:3.3.7
  • Linux Kernel 3.3.8
    cpe:2.3:o:linux:linux_kernel:3.3.8
  • Linux Kernel 3.4
    cpe:2.3:o:linux:linux_kernel:3.4
  • Linux Kernel 3.4 release candidate 1
    cpe:2.3:o:linux:linux_kernel:3.4:rc1
  • Linux Kernel 3.4 release candidate 2
    cpe:2.3:o:linux:linux_kernel:3.4:rc2
  • Linux Kernel 3.4 release candidate 3
    cpe:2.3:o:linux:linux_kernel:3.4:rc3
  • Linux Kernel 3.4 release candidate 4
    cpe:2.3:o:linux:linux_kernel:3.4:rc4
  • Linux Kernel 3.4 release candidate 5
    cpe:2.3:o:linux:linux_kernel:3.4:rc5
  • Linux Kernel 3.4 release candidate 6
    cpe:2.3:o:linux:linux_kernel:3.4:rc6
  • Linux Kernel 3.4 release candidate 7
    cpe:2.3:o:linux:linux_kernel:3.4:rc7
  • Linux Kernel 3.4.1
    cpe:2.3:o:linux:linux_kernel:3.4.1
  • Linux Kernel 3.4.10
    cpe:2.3:o:linux:linux_kernel:3.4.10
  • Linux Kernel 3.4.11
    cpe:2.3:o:linux:linux_kernel:3.4.11
  • Linux Kernel 3.4.12
    cpe:2.3:o:linux:linux_kernel:3.4.12
  • Linux Kernel 3.4.13
    cpe:2.3:o:linux:linux_kernel:3.4.13
  • Linux Kernel 3.4.14
    cpe:2.3:o:linux:linux_kernel:3.4.14
  • Linux Kernel 3.4.15
    cpe:2.3:o:linux:linux_kernel:3.4.15
  • Linux Kernel 3.4.16
    cpe:2.3:o:linux:linux_kernel:3.4.16
  • Linux Kernel 3.4.17
    cpe:2.3:o:linux:linux_kernel:3.4.17
  • Linux Kernel 3.4.18
    cpe:2.3:o:linux:linux_kernel:3.4.18
  • Linux Kernel 3.4.19
    cpe:2.3:o:linux:linux_kernel:3.4.19
  • Linux Kernel 3.4.2
    cpe:2.3:o:linux:linux_kernel:3.4.2
  • Linux Kernel 3.4.20
    cpe:2.3:o:linux:linux_kernel:3.4.20
  • Linux Kernel 3.4.21
    cpe:2.3:o:linux:linux_kernel:3.4.21
  • Linux Kernel 3.4.22
    cpe:2.3:o:linux:linux_kernel:3.4.22
  • Linux Kernel 3.4.23
    cpe:2.3:o:linux:linux_kernel:3.4.23
  • Linux Kernel 3.4.24
    cpe:2.3:o:linux:linux_kernel:3.4.24
  • Linux Kernel 3.4.25
    cpe:2.3:o:linux:linux_kernel:3.4.25
  • Linux Kernel 3.4.26
    cpe:2.3:o:linux:linux_kernel:3.4.26
  • Linux Kernel 3.4.27
    cpe:2.3:o:linux:linux_kernel:3.4.27
  • Linux Kernel 3.4.28
    cpe:2.3:o:linux:linux_kernel:3.4.28
  • Linux Kernel 3.4.29
    cpe:2.3:o:linux:linux_kernel:3.4.29
  • Linux Kernel 3.4.3
    cpe:2.3:o:linux:linux_kernel:3.4.3
  • Linux Kernel 3.4.30
    cpe:2.3:o:linux:linux_kernel:3.4.30
  • Linux Kernel 3.4.31
    cpe:2.3:o:linux:linux_kernel:3.4.31
  • Linux Kernel 3.4.32
    cpe:2.3:o:linux:linux_kernel:3.4.32
  • Linux Kernel 3.4.4
    cpe:2.3:o:linux:linux_kernel:3.4.4
  • Linux Kernel 3.4.5
    cpe:2.3:o:linux:linux_kernel:3.4.5
  • Linux Kernel 3.4.6
    cpe:2.3:o:linux:linux_kernel:3.4.6
  • Linux Kernel 3.4.7
    cpe:2.3:o:linux:linux_kernel:3.4.7
  • Linux Kernel 3.4.8
    cpe:2.3:o:linux:linux_kernel:3.4.8
  • Linux Kernel 3.4.9
    cpe:2.3:o:linux:linux_kernel:3.4.9
  • Linux Kernel 3.5.1
    cpe:2.3:o:linux:linux_kernel:3.5.1
  • Linux Kernel 3.5.2
    cpe:2.3:o:linux:linux_kernel:3.5.2
  • Linux Kernel 3.5.3
    cpe:2.3:o:linux:linux_kernel:3.5.3
  • Linux Kernel 3.5.4
    cpe:2.3:o:linux:linux_kernel:3.5.4
  • Linux Kernel 3.5.5
    cpe:2.3:o:linux:linux_kernel:3.5.5
  • Linux Kernel 3.5.6
    cpe:2.3:o:linux:linux_kernel:3.5.6
  • Linux Kernel 3.5.7
    cpe:2.3:o:linux:linux_kernel:3.5.7
  • Linux Kernel 3.6
    cpe:2.3:o:linux:linux_kernel:3.6
  • Linux Kernel 3.6.1
    cpe:2.3:o:linux:linux_kernel:3.6.1
  • Linux Kernel 3.6.10
    cpe:2.3:o:linux:linux_kernel:3.6.10
  • Linux Kernel 3.6.11
    cpe:2.3:o:linux:linux_kernel:3.6.11
  • Linux Kernel 3.6.2
    cpe:2.3:o:linux:linux_kernel:3.6.2
  • Linux Kernel 3.6.3
    cpe:2.3:o:linux:linux_kernel:3.6.3
  • Linux Kernel 3.6.4
    cpe:2.3:o:linux:linux_kernel:3.6.4
  • Linux Kernel 3.6.5
    cpe:2.3:o:linux:linux_kernel:3.6.5
  • Linux Kernel 3.6.6
    cpe:2.3:o:linux:linux_kernel:3.6.6
  • Linux Kernel 3.6.7
    cpe:2.3:o:linux:linux_kernel:3.6.7
  • Linux Kernel 3.6.8
    cpe:2.3:o:linux:linux_kernel:3.6.8
  • Linux Kernel 3.6.9
    cpe:2.3:o:linux:linux_kernel:3.6.9
  • Linux Kernel 3.7
    cpe:2.3:o:linux:linux_kernel:3.7
  • Linux Kernel 3.7.1
    cpe:2.3:o:linux:linux_kernel:3.7.1
  • Linux Kernel 3.7.10
    cpe:2.3:o:linux:linux_kernel:3.7.10
  • Linux Kernel 3.7.2
    cpe:2.3:o:linux:linux_kernel:3.7.2
  • Linux Kernel 3.7.3
    cpe:2.3:o:linux:linux_kernel:3.7.3
  • Linux Kernel 3.7.4
    cpe:2.3:o:linux:linux_kernel:3.7.4
  • Linux Kernel 3.7.5
    cpe:2.3:o:linux:linux_kernel:3.7.5
  • Linux Kernel 3.7.6
    cpe:2.3:o:linux:linux_kernel:3.7.6
  • Linux Kernel 3.7.7
    cpe:2.3:o:linux:linux_kernel:3.7.7
  • Linux Kernel 3.7.8
    cpe:2.3:o:linux:linux_kernel:3.7.8
  • Linux Kernel 3.7.9
    cpe:2.3:o:linux:linux_kernel:3.7.9
  • Linux Kernel 3.8.0
    cpe:2.3:o:linux:linux_kernel:3.8.0
  • Linux Kernel 3.8.1
    cpe:2.3:o:linux:linux_kernel:3.8.1
  • Linux Kernel 3.8.10
    cpe:2.3:o:linux:linux_kernel:3.8.10
  • Linux Kernel 3.8.11
    cpe:2.3:o:linux:linux_kernel:3.8.11
  • Linux Kernel 3.8.12
    cpe:2.3:o:linux:linux_kernel:3.8.12
  • Linux Kernel 3.8.13
    cpe:2.3:o:linux:linux_kernel:3.8.13
  • Linux Kernel 3.8.2
    cpe:2.3:o:linux:linux_kernel:3.8.2
  • Linux Kernel 3.8.3
    cpe:2.3:o:linux:linux_kernel:3.8.3
  • Linux Kernel 3.8.4
    cpe:2.3:o:linux:linux_kernel:3.8.4
  • Linux Kernel 3.8.5
    cpe:2.3:o:linux:linux_kernel:3.8.5
  • Linux Kernel 3.8.6
    cpe:2.3:o:linux:linux_kernel:3.8.6
  • Linux Kernel 3.8.7
    cpe:2.3:o:linux:linux_kernel:3.8.7
  • Linux Kernel 3.8.8
    cpe:2.3:o:linux:linux_kernel:3.8.8
  • Linux Kernel 3.8.9
    cpe:2.3:o:linux:linux_kernel:3.8.9
  • Linux Kernel 3.9 release candidate 1
    cpe:2.3:o:linux:linux_kernel:3.9:rc1
  • Linux Kernel 3.9 release candidate 2
    cpe:2.3:o:linux:linux_kernel:3.9:rc2
  • Linux Kernel 3.9 release candidate 3
    cpe:2.3:o:linux:linux_kernel:3.9:rc3
  • Linux Kernel 3.9 release candidate 4
    cpe:2.3:o:linux:linux_kernel:3.9:rc4
  • Linux Kernel 3.9 release candidate 5
    cpe:2.3:o:linux:linux_kernel:3.9:rc5
  • Linux Kernel 3.9 release candidate 6
    cpe:2.3:o:linux:linux_kernel:3.9:rc6
  • Linux Kernel 3.9 release candidate 7
    cpe:2.3:o:linux:linux_kernel:3.9:rc7
  • Linux Kernel 3.9.0
    cpe:2.3:o:linux:linux_kernel:3.9.0
  • Linux Kernel 3.9.1
    cpe:2.3:o:linux:linux_kernel:3.9.1
  • Linux Kernel 3.9.10
    cpe:2.3:o:linux:linux_kernel:3.9.10
  • Linux Kernel 3.9.11
    cpe:2.3:o:linux:linux_kernel:3.9.11
  • Linux Kernel 3.9.2
    cpe:2.3:o:linux:linux_kernel:3.9.2
  • Linux Kernel 3.1.9
    cpe:2.3:o:linux:linux_kernel:3.1.9
  • Linux Kernel 3.1.8
    cpe:2.3:o:linux:linux_kernel:3.1.8
CVSS
Base: 4.0 (as of 27-11-2013 - 11:30)
Impact:
Exploitability:
CWE CWE-119
CAPEC
  • Buffer Overflow via Environment Variables
    This attack pattern involves causing a buffer overflow through manipulation of environment variables. Once the attacker finds that they can modify an environment variable, they may try to overflow associated buffers. This attack leverages implicit trust often placed in environment variables.
  • Overflow Buffers
    Buffer Overflow attacks target improper or missing bounds checking on buffer operations, typically triggered by input injected by an attacker. As a consequence, an attacker is able to write past the boundaries of allocated buffer regions in memory, causing a program crash or potentially redirection of execution as per the attackers' choice.
  • Client-side Injection-induced Buffer Overflow
    This type of attack exploits a buffer overflow vulnerability in targeted client software through injection of malicious content from a custom-built hostile service.
  • Filter Failure through Buffer Overflow
    In this attack, the idea is to cause an active filter to fail by causing an oversized transaction. An attacker may try to feed overly long input strings to the program in an attempt to overwhelm the filter (by causing a buffer overflow) and hoping that the filter does not fail securely (i.e. the user input is let into the system unfiltered).
  • MIME Conversion
    An attacker exploits a weakness in the MIME conversion routine to cause a buffer overflow and gain control over the mail server machine. The MIME system is designed to allow various different information formats to be interpreted and sent via e-mail. Attack points exist when data are converted to MIME compatible format and back.
  • Overflow Binary Resource File
    An attack of this type exploits a buffer overflow vulnerability in the handling of binary resources. Binary resources may include music files like MP3, image files like JPEG files, and any other binary file. These attacks may pass unnoticed to the client machine through normal usage of files, such as a browser loading a seemingly innocent JPEG file. This can allow the attacker access to the execution stack and execute arbitrary code in the target process. This attack pattern is a variant of standard buffer overflow attacks using an unexpected vector (binary files) to wrap its attack and open up a new attack vector. The attacker is required to either directly serve the binary content to the victim, or place it in a locale like a MP3 sharing application, for the victim to download. The attacker then is notified upon the download or otherwise locates the vulnerability opened up by the buffer overflow.
  • Buffer Overflow via Symbolic Links
    This type of attack leverages the use of symbolic links to cause buffer overflows. An attacker can try to create or manipulate a symbolic link file such that its contents result in out of bounds data. When the target software processes the symbolic link file, it could potentially overflow internal buffers with insufficient bounds checking.
  • Overflow Variables and Tags
    This type of attack leverages the use of tags or variables from a formatted configuration data to cause buffer overflow. The attacker crafts a malicious HTML page or configuration file that includes oversized strings, thus causing an overflow.
  • Buffer Overflow via Parameter Expansion
    In this attack, the target software is given input that the attacker knows will be modified and expanded in size during processing. This attack relies on the target software failing to anticipate that the expanded data may exceed some internal limit, thereby creating a buffer overflow.
  • Buffer Overflow in an API Call
    This attack targets libraries or shared code modules which are vulnerable to buffer overflow attacks. An attacker who has access to an API may try to embed malicious code in the API function call and exploit a buffer overflow vulnerability in the function's implementation. All clients that make use of the code library thus become vulnerable by association. This has a very broad effect on security across a system, usually affecting more than one software process.
  • Buffer Overflow in Local Command-Line Utilities
    This attack targets command-line utilities available in a number of shells. An attacker can leverage a vulnerability found in a command-line utility to escalate privilege to root.
Access
VectorComplexityAuthentication
LOCAL HIGH NONE
Impact
ConfidentialityIntegrityAvailability
NONE NONE COMPLETE
nessus via4
  • NASL family Fedora Local Security Checks
    NASL id FEDORA_2013-22531.NASL
    description Update to last upstream 3.11 stable release, 3.11.10. Note that Tenable Network Security has extracted the preceding description block directly from the Fedora security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen 2019-02-21
    modified 2015-10-19
    plugin id 71222
    published 2013-12-05
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=71222
    title Fedora 20 : kernel-3.11.10-300.fc20 (2013-22531)
  • NASL family SuSE Local Security Checks
    NASL id SUSE_SU-2014-0772-1.NASL
    description The SUSE Linux Enterprise Server 10 Service Pack 4 LTSS kernel has been updated to fix various security issues and several bugs. The following security issues have been addressed : CVE-2013-6382: Multiple buffer underflows in the XFS implementation in the Linux kernel through 3.12.1 allow local users to cause a denial of service (memory corruption) or possibly have unspecified other impact by leveraging the CAP_SYS_ADMIN capability for a (1) XFS_IOC_ATTRLIST_BY_HANDLE or (2) XFS_IOC_ATTRLIST_BY_HANDLE_32 ioctl call with a crafted length value, related to the xfs_attrlist_by_handle function in fs/xfs/xfs_ioctl.c and the xfs_compat_attrlist_by_handle function in fs/xfs/xfs_ioctl32.c. (bnc#852553) CVE-2013-7263: The Linux kernel before 3.12.4 updates certain length values before ensuring that associated data structures have been initialized, which allows local users to obtain sensitive information from kernel stack memory via a (1) recvfrom, (2) recvmmsg, or (3) recvmsg system call, related to net/ipv4/ping.c, net/ipv4/raw.c, net/ipv4/udp.c, net/ipv6/raw.c, and net/ipv6/udp.c. (bnc#857643) CVE-2013-7264: The l2tp_ip_recvmsg function in net/l2tp/l2tp_ip.c in the Linux kernel before 3.12.4 updates a certain length value before ensuring that an associated data structure has been initialized, which allows local users to obtain sensitive information from kernel stack memory via a (1) recvfrom, (2) recvmmsg, or (3) recvmsg system call. (bnc#857643) CVE-2013-7265: The pn_recvmsg function in net/phonet/datagram.c in the Linux kernel before 3.12.4 updates a certain length value before ensuring that an associated data structure has been initialized, which allows local users to obtain sensitive information from kernel stack memory via a (1) recvfrom, (2) recvmmsg, or (3) recvmsg system call. (bnc#857643) CVE-2014-1737: The raw_cmd_copyin function in drivers/block/floppy.c in the Linux kernel through 3.14.3 does not properly handle error conditions during processing of an FDRAWCMD ioctl call, which allows local users to trigger kfree operations and gain privileges by leveraging write access to a /dev/fd device. (bnc#875798) CVE-2014-1738: The raw_cmd_copyout function in drivers/block/floppy.c in the Linux kernel through 3.14.3 does not properly restrict access to certain pointers during processing of an FDRAWCMD ioctl call, which allows local users to obtain sensitive information from kernel heap memory by leveraging write access to a /dev/fd device. (bnc#875798) Additionally, the following non-security bugs have been fixed : - tcp: syncookies: reduce cookie lifetime to 128 seconds (bnc#833968). - tcp: syncookies: reduce mss table to four values (bnc#833968). - ia64: Change default PSR.ac from '1' to '0' (Fix erratum #237) (bnc#874108). - tty: fix up atime/mtime mess, take three (bnc#797175). Note that Tenable Network Security has extracted the preceding description block directly from the SUSE security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen 2019-02-21
    modified 2019-01-02
    plugin id 83626
    published 2015-05-20
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=83626
    title SUSE SLES10 Security Update : kernel (SUSE-SU-2014:0772-1)
  • NASL family SuSE Local Security Checks
    NASL id SUSE_11_KERNEL-140709.NASL
    description The SUSE Linux Enterprise 11 Service Pack 3 kernel has been updated to fix various bugs and security issues. The following security bugs have been fixed : - The rds_ib_xmit function in net/rds/ib_send.c in the Reliable Datagram Sockets (RDS) protocol implementation in the Linux kernel 3.7.4 and earlier allows local users to cause a denial of service (BUG_ON and kernel panic) by establishing an RDS connection with the source IP address equal to the IPoIB interfaces own IP address, as demonstrated by rds-ping. (bnc#767610). (CVE-2012-2372) - The Linux kernel before 3.12.2 does not properly use the get_dumpable function, which allows local users to bypass intended ptrace restrictions or obtain sensitive information from IA64 scratch registers via a crafted application, related to kernel/ptrace.c and arch/ia64/include/asm/processor.h. (bnc#847652). (CVE-2013-2929) - Interpretation conflict in drivers/md/dm-snap-persistent.c in the Linux kernel through 3.11.6 allows remote authenticated users to obtain sensitive information or modify data via a crafted mapping to a snapshot block device. (bnc#846404). (CVE-2013-4299) - The ath9k_htc_set_bssid_mask function in drivers/net/wireless/ath/ath9k/htc_drv_main.c in the Linux kernel through 3.12 uses a BSSID masking approach to determine the set of MAC addresses on which a Wi-Fi device is listening, which allows remote attackers to discover the original MAC address after spoofing by sending a series of packets to MAC addresses with certain bit manipulations. (bnc#851426). (CVE-2013-4579) - Multiple buffer underflows in the XFS implementation in the Linux kernel through 3.12.1 allow local users to cause a denial of service (memory corruption) or possibly have unspecified other impact by leveraging the CAP_SYS_ADMIN capability for a (1) XFS_IOC_ATTRLIST_BY_HANDLE or (2) XFS_IOC_ATTRLIST_BY_HANDLE_32 ioctl call with a crafted length value, related to the xfs_attrlist_by_handle function in fs/xfs/xfs_ioctl.c and the xfs_compat_attrlist_by_handle function in fs/xfs/xfs_ioctl32.c. (bnc#852553). (CVE-2013-6382) - The rds_ib_laddr_check function in net/rds/ib.c in the Linux kernel before 3.12.8 allows local users to cause a denial of service (NULL pointer dereference and system crash) or possibly have unspecified other impact via a bind system call for an RDS socket on a system that lacks RDS transports. (bnc#869563). (CVE-2013-7339) - The get_rx_bufs function in drivers/vhost/net.c in the vhost-net subsystem in the Linux kernel package before 2.6.32-431.11.2 on Red Hat Enterprise Linux (RHEL) 6 does not properly handle vhost_get_vq_desc errors, which allows guest OS users to cause a denial of service (host OS crash) via unspecified vectors. (bnc#870173). (CVE-2014-0055) - drivers/vhost/net.c in the Linux kernel before 3.13.10, when mergeable buffers are disabled, does not properly validate packet lengths, which allows guest OS users to cause a denial of service (memory corruption and host OS crash) or possibly gain privileges on the host OS via crafted packets, related to the handle_rx and get_rx_bufs functions. (bnc#870576). (CVE-2014-0077) - The sctp_sf_do_5_1D_ce function in net/sctp/sm_statefuns.c in the Linux kernel through 3.13.6 does not validate certain auth_enable and auth_capable fields before making an sctp_sf_authenticate call, which allows remote attackers to cause a denial of service (NULL pointer dereference and system crash) via an SCTP handshake with a modified INIT chunk and a crafted AUTH chunk before a COOKIE_ECHO chunk. (bnc#866102). (CVE-2014-0101) - Use-after-free vulnerability in the skb_segment function in net/core/skbuff.c in the Linux kernel through 3.13.6 allows attackers to obtain sensitive information from kernel memory by leveraging the absence of a certain orphaning operation. (bnc#867723). (CVE-2014-0131) - The ioapic_deliver function in virt/kvm/ioapic.c in the Linux kernel through 3.14.1 does not properly validate the kvm_irq_delivery_to_apic return value, which allows guest OS users to cause a denial of service (host OS crash) via a crafted entry in the redirection table of an I/O APIC. NOTE: the affected code was moved to the ioapic_service function before the vulnerability was announced. (bnc#872540). (CVE-2014-0155) - The fst_get_iface function in drivers/net/wan/farsync.c in the Linux kernel before 3.11.7 does not properly initialize a certain data structure, which allows local users to obtain sensitive information from kernel memory by leveraging the CAP_NET_ADMIN capability for an SIOCWANDEV ioctl call. (bnc#858869). (CVE-2014-1444) - The wanxl_ioctl function in drivers/net/wan/wanxl.c in the Linux kernel before 3.11.7 does not properly initialize a certain data structure, which allows local users to obtain sensitive information from kernel memory via an ioctl call. (bnc#858870). (CVE-2014-1445) - The yam_ioctl function in drivers/net/hamradio/yam.c in the Linux kernel before 3.12.8 does not initialize a certain structure member, which allows local users to obtain sensitive information from kernel memory by leveraging the CAP_NET_ADMIN capability for an SIOCYAMGCFG ioctl call. (bnc#858872). (CVE-2014-1446) - The security_context_to_sid_core function in security/selinux/ss/services.c in the Linux kernel before 3.13.4 allows local users to cause a denial of service (system crash) by leveraging the CAP_MAC_ADMIN capability to set a zero-length security context. (bnc#863335). (CVE-2014-1874) - The ip6_route_add function in net/ipv6/route.c in the Linux kernel through 3.13.6 does not properly count the addition of routes, which allows remote attackers to cause a denial of service (memory consumption) via a flood of ICMPv6 Router Advertisement packets. (bnc#867531). (CVE-2014-2309) - net/netfilter/nf_conntrack_proto_dccp.c in the Linux kernel through 3.13.6 uses a DCCP header pointer incorrectly, which allows remote attackers to cause a denial of service (system crash) or possibly execute arbitrary code via a DCCP packet that triggers a call to the (1) dccp_new, (2) dccp_packet, or (3) dccp_error function. (bnc#868653). (CVE-2014-2523) - The rds_iw_laddr_check function in net/rds/iw.c in the Linux kernel through 3.14 allows local users to cause a denial of service (NULL pointer dereference and system crash) or possibly have unspecified other impact via a bind system call for an RDS socket on a system that lacks RDS transports. (bnc#871561). (CVE-2014-2678) - Integer overflow in the ping_init_sock function in net/ipv4/ping.c in the Linux kernel through 3.14.1 allows local users to cause a denial of service (use-after-free and system crash) or possibly gain privileges via a crafted application that leverages an improperly managed reference counter. (bnc#873374). (CVE-2014-2851) - The try_to_unmap_cluster function in mm/rmap.c in the Linux kernel before 3.14.3 does not properly consider which pages must be locked, which allows local users to cause a denial of service (system crash) by triggering a memory-usage pattern that requires removal of page-table mappings. (bnc#876102). (CVE-2014-3122) - The (1) BPF_S_ANC_NLATTR and (2) BPF_S_ANC_NLATTR_NEST extension implementations in the sk_run_filter function in net/core/filter.c in the Linux kernel through 3.14.3 do not check whether a certain length value is sufficiently large, which allows local users to cause a denial of service (integer underflow and system crash) via crafted BPF instructions. NOTE: the affected code was moved to the __skb_get_nlattr and __skb_get_nlattr_nest functions before the vulnerability was announced. (bnc#877257). (CVE-2014-3144) - The BPF_S_ANC_NLATTR_NEST extension implementation in the sk_run_filter function in net/core/filter.c in the Linux kernel through 3.14.3 uses the reverse order in a certain subtraction, which allows local users to cause a denial of service (over-read and system crash) via crafted BPF instructions. NOTE: the affected code was moved to the __skb_get_nlattr_nest function before the vulnerability was announced. (bnc#877257). (CVE-2014-3145) - kernel/auditsc.c in the Linux kernel through 3.14.5, when CONFIG_AUDITSYSCALL is enabled with certain syscall rules, allows local users to obtain potentially sensitive single-bit values from kernel memory or cause a denial of service (OOPS) via a large value of a syscall number. (bnc#880484). (CVE-2014-3917) - arch/x86/kernel/entry_32.S in the Linux kernel through 3.15.1 on 32-bit x86 platforms, when syscall auditing is enabled and the sep CPU feature flag is set, allows local users to cause a denial of service (OOPS and system crash) via an invalid syscall number, as demonstrated by number. (CVE-2014-4508) -. (bnc#883724) - Race condition in the tlv handler functionality in the snd_ctl_elem_user_tlv function in sound/core/control.c in the ALSA control implementation in the Linux kernel before 3.15.2 allows local users to obtain sensitive information from kernel memory by leveraging /dev/snd/controlCX access. (bnc#883795). (CVE-2014-4652) - sound/core/control.c in the ALSA control implementation in the Linux kernel before 3.15.2 does not ensure possession of a read/write lock, which allows local users to cause a denial of service (use-after-free) and obtain sensitive information from kernel memory by leveraging /dev/snd/controlCX access. (bnc#883795). (CVE-2014-4653) - The snd_ctl_elem_add function in sound/core/control.c in the ALSA control implementation in the Linux kernel before 3.15.2 does not check authorization for SNDRV_CTL_IOCTL_ELEM_REPLACE commands, which allows local users to remove kernel controls and cause a denial of service (use-after-free and system crash) by leveraging /dev/snd/controlCX access for an ioctl call. (bnc#883795). (CVE-2014-4654) - The snd_ctl_elem_add function in sound/core/control.c in the ALSA control implementation in the Linux kernel before 3.15.2 does not properly maintain the user_ctl_count value, which allows local users to cause a denial of service (integer overflow and limit bypass) by leveraging /dev/snd/controlCX access for a large number of SNDRV_CTL_IOCTL_ELEM_REPLACE ioctl calls. (bnc#883795). (CVE-2014-4655) - Multiple integer overflows in sound/core/control.c in the ALSA control implementation in the Linux kernel before 3.15.2 allow local users to cause a denial of service by leveraging /dev/snd/controlCX access, related to (1) index values in the snd_ctl_add function and (2) numid values in the snd_ctl_remove_numid_conflict function. (bnc#883795). (CVE-2014-4656) - The Linux kernel before 3.15.4 on Intel processors does not properly restrict use of a non-canonical value for the saved RIP address in the case of a system call that does not use IRET, which allows local users to leverage a race condition and gain privileges, or cause a denial of service (double fault), via a crafted application that makes ptrace and fork system calls. (bnc#885725). (CVE-2014-4699) Also the following non-security bugs have been fixed : - kernel: avoid page table walk on user space access (bnc#878407, LTC#110316). - spinlock: fix system hang with spin_retry <= 0 (bnc#874145, LTC#110189). - x86/UV: Set n_lshift based on GAM_GR_CONFIG MMR for UV3. (bnc#876176) - x86: Enable multiple CPUs in crash kernel. (bnc#846690) - x86/mce: Fix CMCI preemption bugs. (bnc#786450) - x86, CMCI: Add proper detection of end of CMCI storms. (bnc#786450) - futex: revert back to the explicit waiter counting code. (bnc#851603) - futex: avoid race between requeue and wake. (bnc#851603) - intel-iommu: fix off-by-one in pagetable freeing. (bnc#874577) - ia64: Change default PSR.ac from '1' to '0' (Fix erratum #237). (bnc#874108) - drivers/rtc/interface.c: fix infinite loop in initializing the alarm. (bnc#871676) - drm/ast: Fix double lock at PM resume. (bnc#883380) - drm/ast: add widescreen + rb modes from X.org driver (v2). (bnc#883380) - drm/ast: deal with bo reserve fail in dirty update path. (bnc#883380) - drm/ast: do not attempt to acquire a reservation while in an interrupt handler. (bnc#883380) - drm/ast: fix the ast open key function. (bnc#883380) - drm/ast: fix value check in cbr_scan2. (bnc#883380) - drm/ast: inline reservations. (bnc#883380) - drm/ast: invalidate page tables when pinning a BO. (bnc#883380) - drm/ast: rename the mindwm/moutdwm and deinline them. (bnc#883380) - drm/ast: resync the dram post code with upstream. (bnc#883380) - drm: ast: use drm_can_sleep. (bnc#883380) - drm/ast: use drm_modeset_lock_all. (bnc#883380) - drm/: Unified handling of unimplemented fb->create_handle. (bnc#883380) - drm/mgag200,ast,cirrus: fix regression with drm_can_sleep conversion. (bnc#883380) - drm/mgag200: Consolidate depth/bpp handling. (bnc#882324) - drm/ast: Initialized data needed to map fbdev memory. (bnc#880007) - drm/ast: add AST 2400 support. (bnc#880007) - drm/ast: Initialized data needed to map fbdev memory. (bnc#880007) - drm/mgag200: on cards with < 2MB VRAM default to 16-bit. (bnc#882324) - drm/mgag200: fix typo causing bw limits to be ignored on some chips. (bnc#882324) - drm/ttm: do not oops if no invalidate_caches(). (bnc#869414) - drm/i915: Break encoder->crtc link separately in intel_sanitize_crtc(). (bnc#855126) - dlm: keep listening connection alive with sctp mode. (bnc#881939) - series.conf: Clarify comment about Xen kabi adjustments (bnc#876114#c25) - btrfs: fix a crash when running balance and defrag concurrently. - btrfs: unset DCACHE_DISCONNECTED when mounting default subvol. (bnc#866615) - btrfs: free delayed node outside of root->inode_lock. (bnc#866864) - btrfs: return EPERM when deleting a default subvolume. (bnc#869934) - btrfs: do not loop on large offsets in readdir. (bnc#863300) - sched: Consider pi boosting in setscheduler. - sched: Queue RT tasks to head when prio drops. - sched: Adjust sched_reset_on_fork when nothing else changes. - sched: Fix clock_gettime(CLOCK__CPUTIME_ID) monotonicity. (bnc#880357) - sched: Do not allow scheduler time to go backwards. (bnc#880357) - sched: Make scale_rt_power() deal with backward clocks. (bnc#865310) - sched: Use CPUPRI_NR_PRIORITIES instead of MAX_RT_PRIO in cpupri check. (bnc#871861) - sched: update_rq_clock() must skip ONE update. (bnc#869033, bnc#868528) - tcp: allow to disable cwnd moderation in TCP_CA_Loss state. (bnc#879921) - tcp: clear xmit timers in tcp_v4_syn_recv_sock(). (bnc#862429) - net: add missing bh_unlock_sock() calls. (bnc#862429) - bonding: fix vlan_features computing. (bnc#872634) - vlan: more careful checksum features handling. (bnc#872634) - xfrm: fix race between netns cleanup and state expire notification. (bnc#879957) - xfrm: check peer pointer for null before calling inet_putpeer(). (bnc#877775) - ipv6: do not overwrite inetpeer metrics prematurely. (bnc#867362) - pagecachelimit: reduce lru_lock contention for heavy parallel kabi fixup:. (bnc#878509, bnc#864464) - pagecachelimit: reduce lru_lock contention for heavy parallel reclaim. (bnc#878509, bnc#864464) - TTY: serial, cleanup include file. (bnc#881571) - TTY: serial, fix includes in some drivers. (bnc#881571) - serial_core: Fix race in uart_handle_dcd_change. (bnc#881571) - powerpc/perf: Power8 PMU support. (bnc#832710) - powerpc/perf: Add support for SIER. (bnc#832710) - powerpc/perf: Add regs_no_sipr(). (bnc#832710) - powerpc/perf: Add an accessor for regs->result. (bnc#832710) - powerpc/perf: Convert mmcra_sipr/sihv() to regs_sipr/sihv(). (bnc#832710) - powerpc/perf: Add an explict flag indicating presence of SLOT field. (bnc#832710) - swiotlb: do not assume PA 0 is invalid. (bnc#865882) - lockref: implement lockless reference count updates using cmpxchg() (FATE#317271). - af_iucv: wrong mapping of sent and confirmed skbs (bnc#878407, LTC#110452). - af_iucv: recvmsg problem for SOCK_STREAM sockets (bnc#878407, LTC#110452). - af_iucv: fix recvmsg by replacing skb_pull() function (bnc#878407, LTC#110452). - qla2xxx: Poll during initialization for ISP25xx and ISP83xx. (bnc#837563) - qla2xxx: Fix request queue null dereference. (bnc#859840) - lpfc 8.3.41: Fixed SLI3 failing FCP write on check-condition no-sense with residual zero. (bnc#850915) - reiserfs: call truncate_setsize under tailpack mutex. (bnc#878115) - reiserfs: drop vmtruncate. (bnc#878115) - ipvs: handle IPv6 fragments with one-packet scheduling. (bnc#861980) - kabi: hide modifications of struct sk_buff done by bnc#861980 fix. (bnc#861980) - loop: remove the incorrect write_begin/write_end shortcut. (bnc#878123) - watchdog: hpwdt patch to display informative string. (bnc#862934) - watchdog: hpwdt: Patch to ignore auxilary iLO devices. (bnc#862934) - watchdog: hpwdt: Add check for UEFI bits. (bnc#862934) - watchdog: hpwdt.c: Increase version string. (bnc#862934) - hpilo: Correct panic when an AUX iLO is detected. (bnc#837563) - locking/mutexes: Introduce cancelable MCS lock for adaptive spinning (FATE#317271). - locking/mutexes: Modify the way optimistic spinners are queued (FATE#317271). - locking/mutexes: Return false if task need_resched() in mutex_can_spin_on_owner() (FATE#317271). - mutex: Enable the queuing of mutex spinners with MCS lock (FATE#317271). config: disabled on all flavors - mutex: Queue mutex spinners with MCS lock to reduce cacheline contention (FATE#317271). - memcg: deprecate memory.force_empty knob. (bnc#878274) - kabi: protect struct net from bnc#877013 changes. (bnc#877013) - netfilter: nfnetlink_queue: add net namespace support for nfnetlink_queue. (bnc#877013) - netfilter: make /proc/net/netfilter pernet. (bnc#877013) - netfilter: xt_hashlimit: fix proc entry leak in netns destroy path. (bnc#871634) - netfilter: xt_hashlimit: fix namespace destroy path. (bnc#871634) - netfilter: nf_queue: reject NF_STOLEN verdicts from userspace. (bnc#870877) - netfilter: avoid double free in nf_reinject. (bnc#870877) - netfilter: ctnetlink: fix race between delete and timeout expiration. (bnc#863410) - netfilter: reuse skb->nfct_reasm for ipvs conn reference. (bnc#861980) - mm: per-thread vma caching (FATE#317271). config: enable CONFIG_VMA_CACHE for x86_64/bigsmp - mm, hugetlb: improve page-fault scalability (FATE#317271). - mm: vmscan: Do not throttle based on pfmemalloc reserves if node has no ZONE_NORMAL. (bnc#870496) - mm: fix off-by-one bug in print_nodes_state(). (bnc#792271) - hugetlb: ensure hugepage access is denied if hugepages are not supported (PowerKVM crash when mounting hugetlbfs without hugepage support (bnc#870498)). - SELinux: Increase ebitmap_node size for 64-bit configuration (FATE#317271). - SELinux: Reduce overhead of mls_level_isvalid() function call (FATE#317271). - mutex: Fix debug_mutexes (FATE#317271). - mutex: Fix debug checks (FATE#317271). - locking/mutexes: Unlock the mutex without the wait_lock (FATE#317271). - epoll: do not take the nested ep->mtx on EPOLL_CTL_DEL (FATE#317271). - epoll: do not take global 'epmutex' for simple topologies (FATE#317271). - epoll: optimize EPOLL_CTL_DEL using rcu (FATE#317271). - vfs: Fix missing unlock of vfsmount_lock in unlazy_walk. (bnc#880437) - dcache: kABI fixes for lockref dentries (FATE#317271). - vfs: make sure we do not have a stale root path if unlazy_walk() fails (FATE#317271). - vfs: fix dentry RCU to refcounting possibly sleeping dput() (FATE#317271). - vfs: use lockref 'dead' flag to mark unrecoverably dead dentries (FATE#317271). - vfs: reimplement d_rcu_to_refcount() using lockref_get_or_lock() (FATE#317271). - vfs: Remove second variable named error in __dentry_path (FATE#317271). - make prepend_name() work correctly when called with negative *buflen (FATE#317271). - prepend_path() needs to reinitialize dentry/vfsmount on restarts (FATE#317271). - dcache: get/release read lock in read_seqbegin_or_lock() & friend (FATE#317271). - seqlock: Add a new locking reader type (FATE#317271). - dcache: Translating dentry into pathname without taking rename_lock (FATE#317271). - vfs: make the dentry cache use the lockref infrastructure (FATE#317271). - vfs: Remove dentry->d_lock locking from shrink_dcache_for_umount_subtree() (FATE#317271). - vfs: use lockref_get_not_zero() for optimistic lockless dget_parent() (FATE#317271). - vfs: constify dentry parameter in d_count() (FATE#317271). - helper for reading ->d_count (FATE#317271). - lockref: use arch_mutex_cpu_relax() in CMPXCHG_LOOP() (FATE#317271). - lockref: allow relaxed cmpxchg64 variant for lockless updates (FATE#317271). - lockref: use cmpxchg64 explicitly for lockless updates (FATE#317271). - lockref: add ability to mark lockrefs 'dead' (FATE#317271). - lockref: fix docbook argument names (FATE#317271). - lockref: Relax in cmpxchg loop (FATE#317271). - lockref: implement lockless reference count updates using cmpxchg() (FATE#317271). - lockref: uninline lockref helper functions (FATE#317271). - lockref: add lockref_get_or_lock() helper (FATE#317271). - Add new lockref infrastructure reference implementation (FATE#317271). - vfs: make lremovexattr retry once on ESTALE error. (bnc#876463) - vfs: make removexattr retry once on ESTALE. (bnc#876463) - vfs: make llistxattr retry once on ESTALE error. (bnc#876463) - vfs: make listxattr retry once on ESTALE error. (bnc#876463) - vfs: make lgetxattr retry once on ESTALE. (bnc#876463) - vfs: make getxattr retry once on an ESTALE error. (bnc#876463) - vfs: allow lsetxattr() to retry once on ESTALE errors. (bnc#876463) - vfs: allow setxattr to retry once on ESTALE errors. (bnc#876463) - vfs: allow utimensat() calls to retry once on an ESTALE error. (bnc#876463) - vfs: fix user_statfs to retry once on ESTALE errors. (bnc#876463) - vfs: make fchownat retry once on ESTALE errors. (bnc#876463) - vfs: make fchmodat retry once on ESTALE errors. (bnc#876463) - vfs: have chroot retry once on ESTALE error. (bnc#876463) - vfs: have chdir retry lookup and call once on ESTALE error. (bnc#876463) - vfs: have faccessat retry once on an ESTALE error. (bnc#876463) - vfs: have do_sys_truncate retry once on an ESTALE error. (bnc#876463) - vfs: fix renameat to retry on ESTALE errors. (bnc#876463) - vfs: make do_unlinkat retry once on ESTALE errors. (bnc#876463) - vfs: make do_rmdir retry once on ESTALE errors. (bnc#876463) - vfs: fix linkat to retry once on ESTALE errors. (bnc#876463) - vfs: fix symlinkat to retry on ESTALE errors. (bnc#876463) - vfs: fix mkdirat to retry once on an ESTALE error. (bnc#876463) - vfs: fix mknodat to retry on ESTALE errors. (bnc#876463) - vfs: add a flags argument to user_path_parent. (bnc#876463) - vfs: fix readlinkat to retry on ESTALE. (bnc#876463) - vfs: make fstatat retry on ESTALE errors from getattr call. (bnc#876463) - vfs: add a retry_estale helper function to handle retries on ESTALE. (bnc#876463) - crypto: s390 - fix aes,des ctr mode concurrency finding (bnc#874145, LTC#110078). - s390/cio: fix unlocked access of global bitmap (bnc#874145, LTC#109378). - s390/css: stop stsch loop after cc 3 (bnc#874145, LTC#109378). - s390/pci: add kmsg man page (bnc#874145, LTC#109224). - s390/pci/dma: use correct segment boundary size (bnc#866081, LTC#104566). - cio: Fix missing subchannels after CHPID configure on (bnc#866081, LTC#104808). - cio: Fix process hangs during subchannel scan (bnc#866081, LTC#104805). - cio: fix unusable device (bnc#866081, LTC#104168). - qeth: postpone freeing of qdio memory (bnc#874145, LTC#107873). - Fix race between starved list and device removal. (bnc#861636) - namei.h: include errno.h. (bnc#876463) - ALSA: hda - Implement bind mixer ctls for Conexant. (bnc#872188) - ALSA: hda - Fix invalid Auto-Mute Mode enum from cxt codecs. (bnc#872188) - ALSA: hda - Fix conflicting Capture Source on cxt codecs. (bnc#872188) - ALSA: usb-audio: Fix NULL dereference while quick replugging. (bnc#870335) - powerpc: Bring all threads online prior to migration/hibernation. (bnc#870591) - powerpc/pseries: Update dynamic cache nodes for suspend/resume operation. (bnc#873463) - powerpc/pseries: Device tree should only be updated once after suspend/migrate. (bnc#873463) - powerpc/pseries: Expose in kernel device tree update to drmgr. (bnc#873463) - powerpc: Add second POWER8 PVR entry. (bnc#874440) - libata/ahci: accommodate tag ordered controllers. (bnc#871728) - md: try to remove cause of a spinning md thread. (bnc#875386) - md: fix up plugging (again). (bnc#866800) - NFSv4: Fix a reboot recovery race when opening a file. (bnc#864404) - NFSv4: Ensure delegation recall and byte range lock removal do not conflict. (bnc#864404) - NFSv4: Fix up the return values of nfs4_open_delegation_recall. (bnc#864404) - NFSv4.1: Do not lose locks when a server reboots during delegation return. (bnc#864404) - NFSv4.1: Prevent deadlocks between state recovery and file locking. (bnc#864404) - NFSv4: Allow the state manager to mark an open_owner as being recovered. (bnc#864404) - NFS: nfs_inode_return_delegation() should always flush dirty data. (bnc#864404) - NFSv4: nfs_client_return_marked_delegations cannot flush data. (bnc#864404) - NFS: avoid excessive GETATTR request when attributes expired but cached directory is valid. (bnc#857926) - seqlock: add 'raw_seqcount_begin()' function. (bnc#864404) - Allow nfsdv4 to work when fips=1. (bnc#868488) - NFSv4: Add ACCESS operation to OPEN compound. (bnc#870958) - NFSv4: Fix unnecessary delegation returns in nfs4_do_open. (bnc#870958) - NFSv4: The NFSv4.0 client must send RENEW calls if it holds a delegation. (bnc#863873) - NFSv4: nfs4_proc_renew should be declared static. (bnc#863873) - NFSv4: do not put ACCESS in OPEN compound if O_EXCL. (bnc#870958) - NFS: revalidate on open if dcache is negative. (bnc#876463) - NFSD add module parameter to disable delegations. (bnc#876463) - Do not lose sockets when nfsd shutdown races with connection timeout. (bnc#871854) - timer: Prevent overflow in apply_slack. (bnc#873061) - mei: me: do not load the driver if the FW does not support MEI interface. (bnc#821619) - ipmi: Reset the KCS timeout when starting error recovery. (bnc#870618) - ipmi: Fix a race restarting the timer. (bnc#870618) - ipmi: increase KCS timeouts. (bnc#870618) - bnx2x: Fix kernel crash and data miscompare after EEH recovery. (bnc#881761) - bnx2x: Adapter not recovery from EEH error injection. (bnc#881761) - kabi: hide modifications of struct inet_peer done by bnc#867953 fix. (bnc#867953) - inetpeer: prevent unlinking from unused list twice. (bnc#867953) - Ignore selected taints for tracepoint modules (bnc#870450, FATE#317134). - Use 'E' instead of 'X' for unsigned module taint flag (bnc#870450,FATE#317134). - Fix: module signature vs tracepoints: add new TAINT_UNSIGNED_MODULE (bnc#870450,FATE#317134). - xhci: extend quirk for Renesas cards. (bnc#877497) - scsi: return target failure on EMC inactive snapshot. (bnc#840524) - virtio_balloon: do not softlockup on huge balloon changes. (bnc#871899) - ch: add refcounting. (bnc#867517) - storvsc: NULL pointer dereference fix. (bnc#865330) - Unlock the rename_lock in dentry_path() in the case when path is too long. (bnc#868748)
    last seen 2019-02-21
    modified 2014-09-05
    plugin id 76557
    published 2014-07-17
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=76557
    title SuSE 11.3 Security Update : Linux kernel (SAT Patch Numbers 9488 / 9491 / 9493)
  • NASL family Debian Local Security Checks
    NASL id DEBIAN_DSA-2906.NASL
    description Several vulnerabilities have been discovered in the Linux kernel that may lead to a denial of service, information leak or privilege escalation. The Common Vulnerabilities and Exposures project identifies the following problems : - CVE-2013-0343 George Kargiotakis reported an issue in the temporary address handling of the IPv6 privacy extensions. Users on the same LAN can cause a denial of service or obtain access to sensitive information by sending router advertisement messages that cause temporary address generation to be disabled. - CVE-2013-2147 Dan Carpenter reported issues in the cpqarray driver for Compaq Smart2 Controllers and the cciss driver for HP Smart Array controllers allowing users to gain access to sensitive kernel memory. - CVE-2013-2889 Kees Cook discovered missing input sanitization in the HID driver for Zeroplus game pads that could lead to a local denial of service. - CVE-2013-2893 Kees Cook discovered that missing input sanitization in the HID driver for various Logitech force feedback devices could lead to a local denial of service. - CVE-2013-2929 Vasily Kulikov discovered that a flaw in the get_dumpable() function of the ptrace subsytsem could lead to information disclosure. Only systems with the fs.suid_dumpable sysctl set to a non-default value of '2' are vulnerable. - CVE-2013-4162 Hannes Frederic Sowa discovered that incorrect handling of IPv6 sockets using the UDP_CORK option could result in denial of service. - CVE-2013-4299 Fujitsu reported an issue in the device-mapper subsystem. Local users could gain access to sensitive kernel memory. - CVE-2013-4345 Stephan Mueller found in bug in the ANSI pseudo random number generator which could lead to the use of less entropy than expected. - CVE-2013-4512 Nico Golde and Fabian Yamaguchi reported an issue in the user mode linux port. A buffer overflow condition exists in the write method for the /proc/exitcode file. Local users with sufficient privileges allowing them to write to this file could gain further elevated privileges. - CVE-2013-4587 Andrew Honig of Google reported an issue in the KVM virtualization subsystem. A local user could gain elevated privileges by passing a large vcpu_id parameter. - CVE-2013-6367 Andrew Honig of Google reported an issue in the KVM virtualization subsystem. A divide-by-zero condition could allow a guest user to cause a denial of service on the host (crash). - CVE-2013-6380 Mahesh Rajashekhara reported an issue in the aacraid driver for storage products from various vendors. Local users with CAP_SYS_ADMIN privileges could gain further elevated privileges. - CVE-2013-6381 Nico Golde and Fabian Yamaguchi reported an issue in the Gigabit Ethernet device support for s390 systems. Local users could cause a denial of service or gain elevated privileges via the SIOC_QETH_ADP_SET_SNMP_CONTROL ioctl. - CVE-2013-6382 Nico Golde and Fabian Yamaguchi reported an issue in the XFS filesystem. Local users with CAP_SYS_ADMIN privileges could gain further elevated privileges. - CVE-2013-6383 Dan Carpenter reported an issue in the aacraid driver for storage devices from various vendors. A local user could gain elevated privileges due to a missing privilege level check in the aac_compat_ioctl function. - CVE-2013-7263 CVE-2013-7264 CVE-2013-7265 mpb reported an information leak in the recvfrom, recvmmsg and recvmsg system calls. A local user could obtain access to sensitive kernel memory. - CVE-2013-7339 Sasha Levin reported an issue in the RDS network protocol over Infiniband. A local user could cause a denial of service condition. - CVE-2014-0101 Nokia Siemens Networks reported an issue in the SCTP network protocol subsystem. Remote users could cause a denial of service (NULL pointer dereference). - CVE-2014-1444 Salva Peiro reported an issue in the FarSync WAN driver. Local users with the CAP_NET_ADMIN capability could gain access to sensitive kernel memory. - CVE-2014-1445 Salva Peiro reported an issue in the wanXL serial card driver. Local users could gain access to sensitive kernel memory. - CVE-2014-1446 Salva Peiro reported an issue in the YAM radio modem driver. Local users with the CAP_NET_ADMIN capability could gain access to sensitive kernel memory. - CVE-2014-1874 Matthew Thode reported an issue in the SELinux subsystem. A local user with CAP_MAC_ADMIN privileges could cause a denial of service by setting an empty security context on a file. - CVE-2014-2039 Martin Schwidefsky reported an issue on s390 systems. A local user could cause a denial of service (kernel oops) by executing an application with a linkage stack instruction. - CVE-2014-2523 Daniel Borkmann provided a fix for an issue in the nf_conntrack_dccp module. Remote users could cause a denial of service (system crash) or potentially gain elevated privileges.
    last seen 2019-02-21
    modified 2018-11-10
    plugin id 73713
    published 2014-04-27
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=73713
    title Debian DSA-2906-1 : linux-2.6 - privilege escalation/denial of service/information leak
  • NASL family Ubuntu Local Security Checks
    NASL id UBUNTU_USN-2158-1.NASL
    description Stephan Mueller reported an error in the Linux kernel's ansi cprng random number generator. This flaw makes it easier for a local attacker to break cryptographic protections. (CVE-2013-4345) Nico Golde and Fabian Yamaguchi reported buffer underflow errors in the implementation of the XFS filesystem in the Linux kernel. A local user with CAP_SYS_ADMIN could exploit these flaw to cause a denial of service (memory corruption) or possibly other unspecified issues. (CVE-2013-6382) An information leak was discovered in the Linux kernel when built with the NetFilter Connection Tracking (NF_CONNTRACK) support for IRC protocol (NF_NAT_IRC). A remote attacker could exploit this flaw to obtain potentially sensitive kernel information when communicating over a client- to-client IRC connection(/dcc) via a NAT-ed network. (CVE-2014-1690). Note that Tenable Network Security has extracted the preceding description block directly from the Ubuntu security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen 2019-02-21
    modified 2018-12-01
    plugin id 73288
    published 2014-04-01
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=73288
    title Ubuntu 12.04 LTS : linux-lts-raring vulnerabilities (USN-2158-1)
  • NASL family Fedora Local Security Checks
    NASL id FEDORA_2013-22669.NASL
    description The 3.11.10 stable update contains a number of important fixes across the tree Note that Tenable Network Security has extracted the preceding description block directly from the Fedora security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen 2019-02-21
    modified 2015-10-19
    plugin id 71249
    published 2013-12-08
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=71249
    title Fedora 19 : kernel-3.11.10-200.fc19 (2013-22669)
  • NASL family Ubuntu Local Security Checks
    NASL id UBUNTU_USN-2117-1.NASL
    description Saran Neti reported a flaw in the ipv6 UDP Fragmentation Offload (UFI) in the Linux kernel. A remote attacker could exploit this flaw to cause a denial of service (panic). (CVE-2013-4563) Mathy Vanhoef discovered an error in the the way the ath9k driver was handling the BSSID masking. A remote attacker could exploit this error to discover the original MAC address after a spoofing atack. (CVE-2013-4579) Andrew Honig reported a flaw in the Linux Kernel's kvm_vm_ioctl_create_vcpu function of the Kernel Virtual Machine (KVM) subsystem. A local user could exploit this flaw to gain privileges on the host machine. (CVE-2013-4587) Andrew Honig reported a flaw in the apic_get_tmcct function of the Kernel Virtual Machine (KVM) subsystem if the Linux kernel. A guest OS user could exploit this flaw to cause a denial of service or host OS system crash. (CVE-2013-6367) Andrew Honig reported an error in the Linux Kernel's Kernel Virtual Machine (KVM) VAPIC synchronization operation. A local user could exploit this flaw to gain privileges or cause a denial of service (system crash). (CVE-2013-6368) Lars Bull discovered a flaw in the recalculate_apic_map function of the Kernel Virtual Machine (KVM) subsystem in the Linux kernel. A guest OS user could exploit this flaw to cause a denial of service (host OS crash). (CVE-2013-6376) Nico Golde and Fabian Yamaguchi reported buffer underflow errors in the implementation of the XFS filesystem in the Linux kernel. A local user with CAP_SYS_ADMIN could exploit these flaw to cause a denial of service (memory corruption) or possibly other unspecified issues. (CVE-2013-6382) A flaw was discovered in the ipv4 ping_recvmsg function of the Linux kernel. A local user could exploit this flaw to cause a denial of service (NULL pointer dereference and system crash). (CVE-2013-6432) mpd reported an information leak in the recvfrom, recvmmsg, and recvmsg system calls in the Linux kernel. An unprivileged local user could exploit this flaw to obtain sensitive information from kernel stack memory. (CVE-2013-7263) mpb reported an information leak in the Layer Two Tunneling Protocol (l2tp) of the Linux kernel. A local user could exploit this flaw to obtain sensitive information from kernel stack memory. (CVE-2013-7264) mpb reported an information leak in the Phone Network protocol (phonet) in the Linux kernel. A local user could exploit this flaw to obtain sensitive information from kernel stack memory. (CVE-2013-7265) An information leak was discovered in the recvfrom, recvmmsg, and recvmsg systemcalls when used with ISDN sockets in the Linux kernel. A local user could exploit this leak to obtain potentially sensitive information from kernel memory. (CVE-2013-7266) An information leak was discovered in the recvfrom, recvmmsg, and recvmsg systemcalls when used with apple talk sockets in the Linux kernel. A local user could exploit this leak to obtain potentially sensitive information from kernel memory. (CVE-2013-7267) An information leak was discovered in the recvfrom, recvmmsg, and recvmsg systemcalls when used with ipx protocol sockets in the Linux kernel. A local user could exploit this leak to obtain potentially sensitive information from kernel memory. (CVE-2013-7268) An information leak was discovered in the recvfrom, recvmmsg, and recvmsg systemcalls when used with the netrom address family in the Linux kernel. A local user could exploit this leak to obtain potentially sensitive information from kernel memory. (CVE-2013-7269) An information leak was discovered in the recvfrom, recvmmsg, and recvmsg systemcalls when used with packet address family sockets in the Linux kernel. A local user could exploit this leak to obtain potentially sensitive information from kernel memory. (CVE-2013-7270) An information leak was discovered in the recvfrom, recvmmsg, and recvmsg systemcalls when used with x25 protocol sockets in the Linux kernel. A local user could exploit this leak to obtain potentially sensitive information from kernel memory. (CVE-2013-7271) mpb reported an information leak in the Low-Rate Wireless Personal Area Networks support (IEEE 802.15.4) in the Linux kernel. A local user could exploit this flaw to obtain sensitive information from kernel stack memory. (CVE-2013-7281) halfdog reported an error in the AMD K7 and K8 platform support in the Linux kernel. An unprivileged local user could exploit this flaw on AMD based systems to cause a denial of service (task kill) or possibly gain privileges via a crafted application. (CVE-2014-1438) An information leak was discovered in the Linux kernel's hamradio YAM driver for AX.25 packet radio. A local user with the CAP_NET_ADMIN capability could exploit this flaw to obtain sensitive information from kernel memory. (CVE-2014-1446). Note that Tenable Network Security has extracted the preceding description block directly from the Ubuntu security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen 2019-02-21
    modified 2018-12-01
    plugin id 72578
    published 2014-02-19
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=72578
    title Ubuntu 13.10 : linux vulnerabilities (USN-2117-1)
  • NASL family Ubuntu Local Security Checks
    NASL id UBUNTU_USN-2129-1.NASL
    description An information leak was discovered in the Linux kernel when inotify is used to monitor the /dev/ptmx device. A local user could exploit this flaw to discover keystroke timing and potentially discover sensitive information like password length. (CVE-2013-0160) Vasily Kulikov reported a flaw in the Linux kernel's implementation of ptrace. An unprivileged local user could exploit this flaw to obtain sensitive information from kernel memory. (CVE-2013-2929) Andrew Honig reported a flaw in the Linux Kernel's kvm_vm_ioctl_create_vcpu function of the Kernel Virtual Machine (KVM) subsystem. A local user could exploit this flaw to gain privileges on the host machine. (CVE-2013-4587) Andrew Honig reported a flaw in the apic_get_tmcct function of the Kernel Virtual Machine (KVM) subsystem if the Linux kernel. A guest OS user could exploit this flaw to cause a denial of service or host OS system crash. (CVE-2013-6367) Nico Golde and Fabian Yamaguchi reported a flaw in the driver for Adaptec AACRAID scsi raid devices in the Linux kernel. A local user could use this flaw to cause a denial of service or possibly other unspecified impact. (CVE-2013-6380) Nico Golde and Fabian Yamaguchi reported buffer underflow errors in the implementation of the XFS filesystem in the Linux kernel. A local user with CAP_SYS_ADMIN could exploit these flaw to cause a denial of service (memory corruption) or possibly other unspecified issues. (CVE-2013-6382) Evan Huus reported a buffer overflow in the Linux kernel's radiotap header parsing. A remote attacker could cause a denial of service (buffer over- read) via a specially crafted header. (CVE-2013-7027) An information leak was discovered in the recvfrom, recvmmsg, and recvmsg systemcalls when used with ISDN sockets in the Linux kernel. A local user could exploit this leak to obtain potentially sensitive information from kernel memory. (CVE-2013-7266) An information leak was discovered in the recvfrom, recvmmsg, and recvmsg systemcalls when used with apple talk sockets in the Linux kernel. A local user could exploit this leak to obtain potentially sensitive information from kernel memory. (CVE-2013-7267) An information leak was discovered in the recvfrom, recvmmsg, and recvmsg systemcalls when used with ipx protocol sockets in the Linux kernel. A local user could exploit this leak to obtain potentially sensitive information from kernel memory. (CVE-2013-7268) An information leak was discovered in the recvfrom, recvmmsg, and recvmsg systemcalls when used with the netrom address family in the Linux kernel. A local user could exploit this leak to obtain potentially sensitive information from kernel memory. (CVE-2013-7269) An information leak was discovered in the recvfrom, recvmmsg, and recvmsg systemcalls when used with packet address family sockets in the Linux kernel. A local user could exploit this leak to obtain potentially sensitive information from kernel memory. (CVE-2013-7270) An information leak was discovered in the recvfrom, recvmmsg, and recvmsg systemcalls when used with x25 protocol sockets in the Linux kernel. A local user could exploit this leak to obtain potentially sensitive information from kernel memory. (CVE-2013-7271) An information leak was discovered in the Linux kernel's SIOCWANDEV ioctl call. A local user with the CAP_NET_ADMIN capability could exploit this flaw to obtain potentially sensitive information from kernel memory. (CVE-2014-1444) An information leak was discovered in the wanxl ioctl function the Linux kernel. A local user could exploit this flaw to obtain potentially sensitive information from kernel memory. (CVE-2014-1445) An information leak was discovered in the Linux kernel's hamradio YAM driver for AX.25 packet radio. A local user with the CAP_NET_ADMIN capability could exploit this flaw to obtain sensitive information from kernel memory. (CVE-2014-1446) Matthew Thode reported a denial of service vulnerability in the Linux kernel when SELinux support is enabled. A local user with the CAP_MAC_ADMIN capability (and the SELinux mac_admin permission if running in enforcing mode) could exploit this flaw to cause a denial of service (kernel crash). (CVE-2014-1874). Note that Tenable Network Security has extracted the preceding description block directly from the Ubuntu security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen 2019-02-21
    modified 2018-12-01
    plugin id 72858
    published 2014-03-06
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=72858
    title Ubuntu 10.04 LTS : linux-ec2 vulnerabilities (USN-2129-1)
  • NASL family SuSE Local Security Checks
    NASL id SUSE_SU-2014-0832-1.NASL
    description The SUSE Linux Enterprise Server 10 SP3 LTSS received a roll up update to fix several security and non-security issues. The following security issues have been fixed : CVE-2013-0343: The ipv6_create_tempaddr function in net/ipv6/addrconf.c in the Linux kernel through 3.8 does not properly handle problems with the generation of IPv6 temporary addresses, which allows remote attackers to cause a denial of service (excessive retries and address-generation outage), and consequently obtain sensitive information, via ICMPv6 Router Advertisement (RA) messages. (bnc#805226) CVE-2013-2888: Multiple array index errors in drivers/hid/hid-core.c in the Human Interface Device (HID) subsystem in the Linux kernel through 3.11 allow physically proximate attackers to execute arbitrary code or cause a denial of service (heap memory corruption) via a crafted device that provides an invalid Report ID. (bnc#835839) CVE-2013-2893: The Human Interface Device (HID) subsystem in the Linux kernel through 3.11, when CONFIG_LOGITECH_FF, CONFIG_LOGIG940_FF, or CONFIG_LOGIWHEELS_FF is enabled, allows physically proximate attackers to cause a denial of service (heap-based out-of-bounds write) via a crafted device, related to (1) drivers/hid/hid-lgff.c, (2) drivers/hid/hid-lg3ff.c, and (3) drivers/hid/hid-lg4ff.c. (bnc#835839) CVE-2013-2897: Multiple array index errors in drivers/hid/hid-multitouch.c in the Human Interface Device (HID) subsystem in the Linux kernel through 3.11, when CONFIG_HID_MULTITOUCH is enabled, allow physically proximate attackers to cause a denial of service (heap memory corruption, or NULL pointer dereference and OOPS) via a crafted device. (bnc#835839) CVE-2013-4470: The Linux kernel before 3.12, when UDP Fragmentation Offload (UFO) is enabled, does not properly initialize certain data structures, which allows local users to cause a denial of service (memory corruption and system crash) or possibly gain privileges via a crafted application that uses the UDP_CORK option in a setsockopt system call and sends both short and long packets, related to the ip_ufo_append_data function in net/ipv4/ip_output.c and the ip6_ufo_append_data function in net/ipv6/ip6_output.c. (bnc#847672) CVE-2013-4483: The ipc_rcu_putref function in ipc/util.c in the Linux kernel before 3.10 does not properly manage a reference count, which allows local users to cause a denial of service (memory consumption or system crash) via a crafted application. (bnc#848321) CVE-2013-4588: Multiple stack-based buffer overflows in net/netfilter/ipvs/ip_vs_ctl.c in the Linux kernel before 2.6.33, when CONFIG_IP_VS is used, allow local users to gain privileges by leveraging the CAP_NET_ADMIN capability for (1) a getsockopt system call, related to the do_ip_vs_get_ctl function, or (2) a setsockopt system call, related to the do_ip_vs_set_ctl function. (bnc#851095) CVE-2013-6382: Multiple buffer underflows in the XFS implementation in the Linux kernel through 3.12.1 allow local users to cause a denial of service (memory corruption) or possibly have unspecified other impact by leveraging the CAP_SYS_ADMIN capability for a (1) XFS_IOC_ATTRLIST_BY_HANDLE or (2) XFS_IOC_ATTRLIST_BY_HANDLE_32 ioctl call with a crafted length value, related to the xfs_attrlist_by_handle function in fs/xfs/xfs_ioctl.c and the xfs_compat_attrlist_by_handle function in fs/xfs/xfs_ioctl32.c. (bnc#852553) CVE-2013-6383: The aac_compat_ioctl function in drivers/scsi/aacraid/linit.c in the Linux kernel before 3.11.8 does not require the CAP_SYS_RAWIO capability, which allows local users to bypass intended access restrictions via a crafted ioctl call. (bnc#852558) CVE-2013-7263: The Linux kernel before 3.12.4 updates certain length values before ensuring that associated data structures have been initialized, which allows local users to obtain sensitive information from kernel stack memory via a (1) recvfrom, (2) recvmmsg, or (3) recvmsg system call, related to net/ipv4/ping.c, net/ipv4/raw.c, net/ipv4/udp.c, net/ipv6/raw.c, and net/ipv6/udp.c. (bnc#857643) CVE-2013-7264: The l2tp_ip_recvmsg function in net/l2tp/l2tp_ip.c in the Linux kernel before 3.12.4 updates a certain length value before ensuring that an associated data structure has been initialized, which allows local users to obtain sensitive information from kernel stack memory via a (1) recvfrom, (2) recvmmsg, or (3) recvmsg system call. (bnc#857643) CVE-2013-7265: The pn_recvmsg function in net/phonet/datagram.c in the Linux kernel before 3.12.4 updates a certain length value before ensuring that an associated data structure has been initialized, which allows local users to obtain sensitive information from kernel stack memory via a (1) recvfrom, (2) recvmmsg, or (3) recvmsg system call. (bnc#857643) CVE-2014-1444: The fst_get_iface function in drivers/net/wan/farsync.c in the Linux kernel before 3.11.7 does not properly initialize a certain data structure, which allows local users to obtain sensitive information from kernel memory by leveraging the CAP_NET_ADMIN capability for an SIOCWANDEV ioctl call. (bnc#858869) CVE-2014-1445: The wanxl_ioctl function in drivers/net/wan/wanxl.c in the Linux kernel before 3.11.7 does not properly initialize a certain data structure, which allows local users to obtain sensitive information from kernel memory via an ioctl call. (bnc#858870) CVE-2014-1446: The yam_ioctl function in drivers/net/hamradio/yam.c in the Linux kernel before 3.12.8 does not initialize a certain structure member, which allows local users to obtain sensitive information from kernel memory by leveraging the CAP_NET_ADMIN capability for an SIOCYAMGCFG ioctl call. (bnc#858872) CVE-2014-1737: The raw_cmd_copyin function in drivers/block/floppy.c in the Linux kernel through 3.14.3 does not properly handle error conditions during processing of an FDRAWCMD ioctl call, which allows local users to trigger kfree operations and gain privileges by leveraging write access to a /dev/fd device. (bnc#875798) CVE-2014-1738: The raw_cmd_copyout function in drivers/block/floppy.c in the Linux kernel through 3.14.3 does not properly restrict access to certain pointers during processing of an FDRAWCMD ioctl call, which allows local users to obtain sensitive information from kernel heap memory by leveraging write access to a /dev/fd device. (bnc#875798) The following bugs have been fixed : - kernel: sclp console hangs (bnc#830344, LTC#95711, bnc#860304). - ia64: Change default PSR.ac from '1' to '0' (Fix erratum #237) (bnc#874108). - net: Uninline kfree_skb and allow NULL argument (bnc#853501). - tcp: syncookies: reduce cookie lifetime to 128 seconds (bnc#833968). - tcp: syncookies: reduce mss table to four values (bnc#833968). - udp: Fix bogus UFO packet generation (bnc#847672). - blkdev_max_block: make private to fs/buffer.c (bnc#820338). - vfs: avoid 'attempt to access beyond end of device' warnings (bnc#820338). - vfs: fix O_DIRECT read past end of block device (bnc#820338). - HID: check for NULL field when setting values (bnc#835839). - HID: provide a helper for validating hid reports (bnc#835839). - dl2k: Tighten ioctl permissions (bnc#758813). Note that Tenable Network Security has extracted the preceding description block directly from the SUSE security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen 2019-02-21
    modified 2015-05-20
    plugin id 83628
    published 2015-05-20
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=83628
    title SUSE SLES10 Security Update : kernel (SUSE-SU-2014:0832-1)
  • NASL family Ubuntu Local Security Checks
    NASL id UBUNTU_USN-2109-1.NASL
    description Vasily Kulikov reported a flaw in the Linux kernel's implementation of ptrace. An unprivileged local user could exploit this flaw to obtain sensitive information from kernel memory. (CVE-2013-2929) Stephan Mueller reported an error in the Linux kernel's ansi cprng random number generator. This flaw makes it easier for a local attacker to break cryptographic protections. (CVE-2013-4345) Andrew Honig reported a flaw in the Linux Kernel's kvm_vm_ioctl_create_vcpu function of the Kernel Virtual Machine (KVM) subsystem. A local user could exploit this flaw to gain privileges on the host machine. (CVE-2013-4587) Andrew Honig reported a flaw in the apic_get_tmcct function of the Kernel Virtual Machine (KVM) subsystem if the Linux kernel. A guest OS user could exploit this flaw to cause a denial of service or host OS system crash. (CVE-2013-6367) Nico Golde and Fabian Yamaguchi reported a flaw in the driver for Adaptec AACRAID scsi raid devices in the Linux kernel. A local user could use this flaw to cause a denial of service or possibly other unspecified impact. (CVE-2013-6380) Nico Golde and Fabian Yamaguchi reported buffer underflow errors in the implementation of the XFS filesystem in the Linux kernel. A local user with CAP_SYS_ADMIN could exploit these flaw to cause a denial of service (memory corruption) or possibly other unspecified issues. (CVE-2013-6382) mpd reported an information leak in the recvfrom, recvmmsg, and recvmsg system calls in the Linux kernel. An unprivileged local user could exploit this flaw to obtain sensitive information from kernel stack memory. (CVE-2013-7263) mpb reported an information leak in the Layer Two Tunneling Protocol (l2tp) of the Linux kernel. A local user could exploit this flaw to obtain sensitive information from kernel stack memory. (CVE-2013-7264) mpb reported an information leak in the Phone Network protocol (phonet) in the Linux kernel. A local user could exploit this flaw to obtain sensitive information from kernel stack memory. (CVE-2013-7265) An information leak was discovered in the recvfrom, recvmmsg, and recvmsg systemcalls when used with ISDN sockets in the Linux kernel. A local user could exploit this leak to obtain potentially sensitive information from kernel memory. (CVE-2013-7266) An information leak was discovered in the recvfrom, recvmmsg, and recvmsg systemcalls when used with apple talk sockets in the Linux kernel. A local user could exploit this leak to obtain potentially sensitive information from kernel memory. (CVE-2013-7267) An information leak was discovered in the recvfrom, recvmmsg, and recvmsg systemcalls when used with ipx protocol sockets in the Linux kernel. A local user could exploit this leak to obtain potentially sensitive information from kernel memory. (CVE-2013-7268) An information leak was discovered in the recvfrom, recvmmsg, and recvmsg systemcalls when used with the netrom address family in the Linux kernel. A local user could exploit this leak to obtain potentially sensitive information from kernel memory. (CVE-2013-7269) An information leak was discovered in the recvfrom, recvmmsg, and recvmsg systemcalls when used with packet address family sockets in the Linux kernel. A local user could exploit this leak to obtain potentially sensitive information from kernel memory. (CVE-2013-7270) An information leak was discovered in the recvfrom, recvmmsg, and recvmsg systemcalls when used with x25 protocol sockets in the Linux kernel. A local user could exploit this leak to obtain potentially sensitive information from kernel memory. (CVE-2013-7271) mpb reported an information leak in the Low-Rate Wireless Personal Area Networks support (IEEE 802.15.4) in the Linux kernel. A local user could exploit this flaw to obtain sensitive information from kernel stack memory. (CVE-2013-7281). Note that Tenable Network Security has extracted the preceding description block directly from the Ubuntu security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen 2019-02-21
    modified 2018-12-01
    plugin id 72573
    published 2014-02-19
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=72573
    title Ubuntu 12.04 LTS : linux vulnerabilities (USN-2109-1)
  • NASL family SuSE Local Security Checks
    NASL id SUSE_SU-2014-0773-1.NASL
    description The SUSE Linux Enterprise Server 10 Service Pack 4 LTSS kernel has been updated to fix various security issues and several bugs. The following security issues have been addressed : CVE-2013-6382: Multiple buffer underflows in the XFS implementation in the Linux kernel through 3.12.1 allow local users to cause a denial of service (memory corruption) or possibly have unspecified other impact by leveraging the CAP_SYS_ADMIN capability for a (1) XFS_IOC_ATTRLIST_BY_HANDLE or (2) XFS_IOC_ATTRLIST_BY_HANDLE_32 ioctl call with a crafted length value, related to the xfs_attrlist_by_handle function in fs/xfs/xfs_ioctl.c and the xfs_compat_attrlist_by_handle function in fs/xfs/xfs_ioctl32.c. (bnc#852553) CVE-2013-7263: The Linux kernel before 3.12.4 updates certain length values before ensuring that associated data structures have been initialized, which allows local users to obtain sensitive information from kernel stack memory via a (1) recvfrom, (2) recvmmsg, or (3) recvmsg system call, related to net/ipv4/ping.c, net/ipv4/raw.c, net/ipv4/udp.c, net/ipv6/raw.c, and net/ipv6/udp.c. (bnc#857643) CVE-2013-7264: The l2tp_ip_recvmsg function in net/l2tp/l2tp_ip.c in the Linux kernel before 3.12.4 updates a certain length value before ensuring that an associated data structure has been initialized, which allows local users to obtain sensitive information from kernel stack memory via a (1) recvfrom, (2) recvmmsg, or (3) recvmsg system call. (bnc#857643) CVE-2013-7265: The pn_recvmsg function in net/phonet/datagram.c in the Linux kernel before 3.12.4 updates a certain length value before ensuring that an associated data structure has been initialized, which allows local users to obtain sensitive information from kernel stack memory via a (1) recvfrom, (2) recvmmsg, or (3) recvmsg system call. (bnc#857643) CVE-2014-1737: The raw_cmd_copyin function in drivers/block/floppy.c in the Linux kernel through 3.14.3 does not properly handle error conditions during processing of an FDRAWCMD ioctl call, which allows local users to trigger kfree operations and gain privileges by leveraging write access to a /dev/fd device. (bnc#875798) CVE-2014-1738: The raw_cmd_copyout function in drivers/block/floppy.c in the Linux kernel through 3.14.3 does not properly restrict access to certain pointers during processing of an FDRAWCMD ioctl call, which allows local users to obtain sensitive information from kernel heap memory by leveraging write access to a /dev/fd device. (bnc#875798) Additionally, the following non-security bugs have been fixed : - tcp: syncookies: reduce cookie lifetime to 128 seconds (bnc#833968). - tcp: syncookies: reduce mss table to four values (bnc#833968). - ia64: Change default PSR.ac from '1' to '0' (Fix erratum #237) (bnc#874108). - tty: fix up atime/mtime mess, take three (bnc#797175). Note that Tenable Network Security has extracted the preceding description block directly from the SUSE security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen 2019-02-21
    modified 2019-01-02
    plugin id 83627
    published 2015-05-20
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=83627
    title SUSE SLES10 Security Update : kernel (SUSE-SU-2014:0773-1)
  • NASL family Fedora Local Security Checks
    NASL id FEDORA_2013-22695.NASL
    description The 3.11.10 stable update contains a number of important fixes across the tree Note that Tenable Network Security has extracted the preceding description block directly from the Fedora security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen 2019-02-21
    modified 2015-10-19
    plugin id 71283
    published 2013-12-10
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=71283
    title Fedora 18 : kernel-3.11.10-100.fc18 (2013-22695)
  • NASL family Ubuntu Local Security Checks
    NASL id UBUNTU_USN-2113-1.NASL
    description Saran Neti reported a flaw in the ipv6 UDP Fragmentation Offload (UFI) in the Linux kernel. A remote attacker could exploit this flaw to cause a denial of service (panic). (CVE-2013-4563) Mathy Vanhoef discovered an error in the the way the ath9k driver was handling the BSSID masking. A remote attacker could exploit this error to discover the original MAC address after a spoofing atack. (CVE-2013-4579) Andrew Honig reported a flaw in the Linux Kernel's kvm_vm_ioctl_create_vcpu function of the Kernel Virtual Machine (KVM) subsystem. A local user could exploit this flaw to gain privileges on the host machine. (CVE-2013-4587) Andrew Honig reported a flaw in the apic_get_tmcct function of the Kernel Virtual Machine (KVM) subsystem if the Linux kernel. A guest OS user could exploit this flaw to cause a denial of service or host OS system crash. (CVE-2013-6367) Andrew Honig reported an error in the Linux Kernel's Kernel Virtual Machine (KVM) VAPIC synchronization operation. A local user could exploit this flaw to gain privileges or cause a denial of service (system crash). (CVE-2013-6368) Lars Bull discovered a flaw in the recalculate_apic_map function of the Kernel Virtual Machine (KVM) subsystem in the Linux kernel. A guest OS user could exploit this flaw to cause a denial of service (host OS crash). (CVE-2013-6376) Nico Golde and Fabian Yamaguchi reported buffer underflow errors in the implementation of the XFS filesystem in the Linux kernel. A local user with CAP_SYS_ADMIN could exploit these flaw to cause a denial of service (memory corruption) or possibly other unspecified issues. (CVE-2013-6382) A flaw was discovered in the ipv4 ping_recvmsg function of the Linux kernel. A local user could exploit this flaw to cause a denial of service (NULL pointer dereference and system crash). (CVE-2013-6432) mpd reported an information leak in the recvfrom, recvmmsg, and recvmsg system calls in the Linux kernel. An unprivileged local user could exploit this flaw to obtain sensitive information from kernel stack memory. (CVE-2013-7263) mpb reported an information leak in the Layer Two Tunneling Protocol (l2tp) of the Linux kernel. A local user could exploit this flaw to obtain sensitive information from kernel stack memory. (CVE-2013-7264) mpb reported an information leak in the Phone Network protocol (phonet) in the Linux kernel. A local user could exploit this flaw to obtain sensitive information from kernel stack memory. (CVE-2013-7265) An information leak was discovered in the recvfrom, recvmmsg, and recvmsg systemcalls when used with ISDN sockets in the Linux kernel. A local user could exploit this leak to obtain potentially sensitive information from kernel memory. (CVE-2013-7266) An information leak was discovered in the recvfrom, recvmmsg, and recvmsg systemcalls when used with apple talk sockets in the Linux kernel. A local user could exploit this leak to obtain potentially sensitive information from kernel memory. (CVE-2013-7267) An information leak was discovered in the recvfrom, recvmmsg, and recvmsg systemcalls when used with ipx protocol sockets in the Linux kernel. A local user could exploit this leak to obtain potentially sensitive information from kernel memory. (CVE-2013-7268) An information leak was discovered in the recvfrom, recvmmsg, and recvmsg systemcalls when used with the netrom address family in the Linux kernel. A local user could exploit this leak to obtain potentially sensitive information from kernel memory. (CVE-2013-7269) An information leak was discovered in the recvfrom, recvmmsg, and recvmsg systemcalls when used with packet address family sockets in the Linux kernel. A local user could exploit this leak to obtain potentially sensitive information from kernel memory. (CVE-2013-7270) An information leak was discovered in the recvfrom, recvmmsg, and recvmsg systemcalls when used with x25 protocol sockets in the Linux kernel. A local user could exploit this leak to obtain potentially sensitive information from kernel memory. (CVE-2013-7271) mpb reported an information leak in the Low-Rate Wireless Personal Area Networks support (IEEE 802.15.4) in the Linux kernel. A local user could exploit this flaw to obtain sensitive information from kernel stack memory. (CVE-2013-7281) halfdog reported an error in the AMD K7 and K8 platform support in the Linux kernel. An unprivileged local user could exploit this flaw on AMD based systems to cause a denial of service (task kill) or possibly gain privileges via a crafted application. (CVE-2014-1438) An information leak was discovered in the Linux kernel's hamradio YAM driver for AX.25 packet radio. A local user with the CAP_NET_ADMIN capability could exploit this flaw to obtain sensitive information from kernel memory. (CVE-2014-1446). Note that Tenable Network Security has extracted the preceding description block directly from the Ubuntu security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen 2019-02-21
    modified 2018-12-01
    plugin id 72576
    published 2014-02-19
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=72576
    title Ubuntu 12.04 LTS : linux-lts-saucy vulnerabilities (USN-2113-1)
  • NASL family Mandriva Local Security Checks
    NASL id MANDRIVA_MDVSA-2014-001.NASL
    description Multiple vulnerabilities has been found and corrected in the Linux kernel : The KVM subsystem in the Linux kernel through 3.12.5 allows local users to gain privileges or cause a denial of service (system crash) via a VAPIC synchronization operation involving a page-end address (CVE-2013-6368). The apic_get_tmcct function in arch/x86/kvm/lapic.c in the KVM subsystem in the Linux kernel through 3.12.5 allows guest OS users to cause a denial of service (divide-by-zero error and host OS crash) via crafted modifications of the TMICT value (CVE-2013-6367). Multiple buffer underflows in the XFS implementation in the Linux kernel through 3.12.1 allow local users to cause a denial of service (memory corruption) or possibly have unspecified other impact by leveraging the CAP_SYS_ADMIN capability for a (1) XFS_IOC_ATTRLIST_BY_HANDLE or (2) XFS_IOC_ATTRLIST_BY_HANDLE_32 ioctl call with a crafted length value, related to the xfs_attrlist_by_handle function in fs/xfs/xfs_ioctl.c and the xfs_compat_attrlist_by_handle function in fs/xfs/xfs_ioctl32.c (CVE-2013-6382). Array index error in the kvm_vm_ioctl_create_vcpu function in virt/kvm/kvm_main.c in the KVM subsystem in the Linux kernel through 3.12.5 allows local users to gain privileges via a large id value (CVE-2013-4587). The mISDN_sock_recvmsg function in drivers/isdn/mISDN/socket.c in the Linux kernel before 3.12.4 does not ensure that a certain length value is consistent with the size of an associated data structure, which allows local users to obtain sensitive information from kernel memory via a (1) recvfrom, (2) recvmmsg, or (3) recvmsg system call (CVE-2013-7266). The atalk_recvmsg function in net/appletalk/ddp.c in the Linux kernel before 3.12.4 updates a certain length value without ensuring that an associated data structure has been initialized, which allows local users to obtain sensitive information from kernel memory via a (1) recvfrom, (2) recvmmsg, or (3) recvmsg system call (CVE-2013-7267). The ipx_recvmsg function in net/ipx/af_ipx.c in the Linux kernel before 3.12.4 updates a certain length value without ensuring that an associated data structure has been initialized, which allows local users to obtain sensitive information from kernel memory via a (1) recvfrom, (2) recvmmsg, or (3) recvmsg system call (CVE-2013-7268). The nr_recvmsg function in net/netrom/af_netrom.c in the Linux kernel before 3.12.4 updates a certain length value without ensuring that an associated data structure has been initialized, which allows local users to obtain sensitive information from kernel memory via a (1) recvfrom, (2) recvmmsg, or (3) recvmsg system call (CVE-2013-7269). The packet_recvmsg function in net/packet/af_packet.c in the Linux kernel before 3.12.4 updates a certain length value before ensuring that an associated data structure has been initialized, which allows local users to obtain sensitive information from kernel memory via a (1) recvfrom, (2) recvmmsg, or (3) recvmsg system call (CVE-2013-7270). The x25_recvmsg function in net/x25/af_x25.c in the Linux kernel before 3.12.4 updates a certain length value without ensuring that an associated data structure has been initialized, which allows local users to obtain sensitive information from kernel memory via a (1) recvfrom, (2) recvmmsg, or (3) recvmsg system call (CVE-2013-7271). The Linux kernel before 3.12.4 updates certain length values before ensuring that associated data structures have been initialized, which allows local users to obtain sensitive information from kernel stack memory via a (1) recvfrom, (2) recvmmsg, or (3) recvmsg system call, related to net/ipv4/ping.c, net/ipv4/raw.c, net/ipv4/udp.c, net/ipv6/raw.c, and net/ipv6/udp.c (CVE-2013-7263). The l2tp_ip_recvmsg function in net/l2tp/l2tp_ip.c in the Linux kernel before 3.12.4 updates a certain length value before ensuring that an associated data structure has been initialized, which allows local users to obtain sensitive information from kernel stack memory via a (1) recvfrom, (2) recvmmsg, or (3) recvmsg system call (CVE-2013-7264). The pn_recvmsg function in net/phonet/datagram.c in the Linux kernel before 3.12.4 updates a certain length value before ensuring that an associated data structure has been initialized, which allows local users to obtain sensitive information from kernel stack memory via a (1) recvfrom, (2) recvmmsg, or (3) recvmsg system call (CVE-2013-7265). The dgram_recvmsg function in net/ieee802154/dgram.c in the Linux kernel before 3.12.4 updates a certain length value without ensuring that an associated data structure has been initialized, which allows local users to obtain sensitive information from kernel stack memory via a (1) recvfrom, (2) recvmmsg, or (3) recvmsg system call (CVE-2013-7281). The updated packages provides a solution for these security issues.
    last seen 2019-02-21
    modified 2018-07-19
    plugin id 71936
    published 2014-01-14
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=71936
    title Mandriva Linux Security Advisory : kernel (MDVSA-2014:001)
  • NASL family Ubuntu Local Security Checks
    NASL id UBUNTU_USN-2138-1.NASL
    description Mathy Vanhoef discovered an error in the the way the ath9k driver was handling the BSSID masking. A remote attacker could exploit this error to discover the original MAC address after a spoofing atack. (CVE-2013-4579) Andrew Honig reported a flaw in the Linux Kernel's kvm_vm_ioctl_create_vcpu function of the Kernel Virtual Machine (KVM) subsystem. A local user could exploit this flaw to gain privileges on the host machine. (CVE-2013-4587) Andrew Honig reported a flaw in the apic_get_tmcct function of the Kernel Virtual Machine (KVM) subsystem if the Linux kernel. A guest OS user could exploit this flaw to cause a denial of service or host OS system crash. (CVE-2013-6367) Andrew Honig reported an error in the Linux Kernel's Kernel Virtual Machine (KVM) VAPIC synchronization operation. A local user could exploit this flaw to gain privileges or cause a denial of service (system crash). (CVE-2013-6368) Nico Golde and Fabian Yamaguchi reported buffer underflow errors in the implementation of the XFS filesystem in the Linux kernel. A local user with CAP_SYS_ADMIN could exploit these flaw to cause a denial of service (memory corruption) or possibly other unspecified issues. (CVE-2013-6382) mpd reported an information leak in the recvfrom, recvmmsg, and recvmsg system calls in the Linux kernel. An unprivileged local user could exploit this flaw to obtain sensitive information from kernel stack memory. (CVE-2013-7263) mpb reported an information leak in the Layer Two Tunneling Protocol (l2tp) of the Linux kernel. A local user could exploit this flaw to obtain sensitive information from kernel stack memory. (CVE-2013-7264) mpb reported an information leak in the Phone Network protocol (phonet) in the Linux kernel. A local user could exploit this flaw to obtain sensitive information from kernel stack memory. (CVE-2013-7265) An information leak was discovered in the recvfrom, recvmmsg, and recvmsg systemcalls when used with ISDN sockets in the Linux kernel. A local user could exploit this leak to obtain potentially sensitive information from kernel memory. (CVE-2013-7266) An information leak was discovered in the recvfrom, recvmmsg, and recvmsg systemcalls when used with apple talk sockets in the Linux kernel. A local user could exploit this leak to obtain potentially sensitive information from kernel memory. (CVE-2013-7267) An information leak was discovered in the recvfrom, recvmmsg, and recvmsg systemcalls when used with ipx protocol sockets in the Linux kernel. A local user could exploit this leak to obtain potentially sensitive information from kernel memory. (CVE-2013-7268) An information leak was discovered in the recvfrom, recvmmsg, and recvmsg systemcalls when used with the netrom address family in the Linux kernel. A local user could exploit this leak to obtain potentially sensitive information from kernel memory. (CVE-2013-7269) An information leak was discovered in the recvfrom, recvmmsg, and recvmsg systemcalls when used with packet address family sockets in the Linux kernel. A local user could exploit this leak to obtain potentially sensitive information from kernel memory. (CVE-2013-7270) An information leak was discovered in the recvfrom, recvmmsg, and recvmsg systemcalls when used with x25 protocol sockets in the Linux kernel. A local user could exploit this leak to obtain potentially sensitive information from kernel memory. (CVE-2013-7271) mpb reported an information leak in the Low-Rate Wireless Personal Area Networks support (IEEE 802.15.4) in the Linux kernel. A local user could exploit this flaw to obtain sensitive information from kernel stack memory. (CVE-2013-7281) halfdog reported an error in the AMD K7 and K8 platform support in the Linux kernel. An unprivileged local user could exploit this flaw on AMD based systems to cause a denial of service (task kill) or possibly gain privileges via a crafted application. (CVE-2014-1438) An information leak was discovered in the Linux kernel's hamradio YAM driver for AX.25 packet radio. A local user with the CAP_NET_ADMIN capability could exploit this flaw to obtain sensitive information from kernel memory. (CVE-2014-1446) Matthew Thode reported a denial of service vulnerability in the Linux kernel when SELinux support is enabled. A local user with the CAP_MAC_ADMIN capability (and the SELinux mac_admin permission if running in enforcing mode) could exploit this flaw to cause a denial of service (kernel crash). (CVE-2014-1874). Note that Tenable Network Security has extracted the preceding description block directly from the Ubuntu security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen 2019-02-21
    modified 2018-12-01
    plugin id 72901
    published 2014-03-10
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=72901
    title Ubuntu 12.10 : linux vulnerabilities (USN-2138-1)
  • NASL family Ubuntu Local Security Checks
    NASL id UBUNTU_USN-2135-1.NASL
    description Mathy Vanhoef discovered an error in the the way the ath9k driver was handling the BSSID masking. A remote attacker could exploit this error to discover the original MAC address after a spoofing atack. (CVE-2013-4579) Andrew Honig reported a flaw in the Linux Kernel's kvm_vm_ioctl_create_vcpu function of the Kernel Virtual Machine (KVM) subsystem. A local user could exploit this flaw to gain privileges on the host machine. (CVE-2013-4587) Andrew Honig reported a flaw in the apic_get_tmcct function of the Kernel Virtual Machine (KVM) subsystem if the Linux kernel. A guest OS user could exploit this flaw to cause a denial of service or host OS system crash. (CVE-2013-6367) Andrew Honig reported an error in the Linux Kernel's Kernel Virtual Machine (KVM) VAPIC synchronization operation. A local user could exploit this flaw to gain privileges or cause a denial of service (system crash). (CVE-2013-6368) Nico Golde and Fabian Yamaguchi reported buffer underflow errors in the implementation of the XFS filesystem in the Linux kernel. A local user with CAP_SYS_ADMIN could exploit these flaw to cause a denial of service (memory corruption) or possibly other unspecified issues. (CVE-2013-6382) mpd reported an information leak in the recvfrom, recvmmsg, and recvmsg system calls in the Linux kernel. An unprivileged local user could exploit this flaw to obtain sensitive information from kernel stack memory. (CVE-2013-7263) mpb reported an information leak in the Layer Two Tunneling Protocol (l2tp) of the Linux kernel. A local user could exploit this flaw to obtain sensitive information from kernel stack memory. (CVE-2013-7264) mpb reported an information leak in the Phone Network protocol (phonet) in the Linux kernel. A local user could exploit this flaw to obtain sensitive information from kernel stack memory. (CVE-2013-7265) An information leak was discovered in the recvfrom, recvmmsg, and recvmsg systemcalls when used with ISDN sockets in the Linux kernel. A local user could exploit this leak to obtain potentially sensitive information from kernel memory. (CVE-2013-7266) An information leak was discovered in the recvfrom, recvmmsg, and recvmsg systemcalls when used with apple talk sockets in the Linux kernel. A local user could exploit this leak to obtain potentially sensitive information from kernel memory. (CVE-2013-7267) An information leak was discovered in the recvfrom, recvmmsg, and recvmsg systemcalls when used with ipx protocol sockets in the Linux kernel. A local user could exploit this leak to obtain potentially sensitive information from kernel memory. (CVE-2013-7268) An information leak was discovered in the recvfrom, recvmmsg, and recvmsg systemcalls when used with the netrom address family in the Linux kernel. A local user could exploit this leak to obtain potentially sensitive information from kernel memory. (CVE-2013-7269) An information leak was discovered in the recvfrom, recvmmsg, and recvmsg systemcalls when used with packet address family sockets in the Linux kernel. A local user could exploit this leak to obtain potentially sensitive information from kernel memory. (CVE-2013-7270) An information leak was discovered in the recvfrom, recvmmsg, and recvmsg systemcalls when used with x25 protocol sockets in the Linux kernel. A local user could exploit this leak to obtain potentially sensitive information from kernel memory. (CVE-2013-7271) mpb reported an information leak in the Low-Rate Wireless Personal Area Networks support (IEEE 802.15.4) in the Linux kernel. A local user could exploit this flaw to obtain sensitive information from kernel stack memory. (CVE-2013-7281) halfdog reported an error in the AMD K7 and K8 platform support in the Linux kernel. An unprivileged local user could exploit this flaw on AMD based systems to cause a denial of service (task kill) or possibly gain privileges via a crafted application. (CVE-2014-1438) An information leak was discovered in the Linux kernel's hamradio YAM driver for AX.25 packet radio. A local user with the CAP_NET_ADMIN capability could exploit this flaw to obtain sensitive information from kernel memory. (CVE-2014-1446) Matthew Thode reported a denial of service vulnerability in the Linux kernel when SELinux support is enabled. A local user with the CAP_MAC_ADMIN capability (and the SELinux mac_admin permission if running in enforcing mode) could exploit this flaw to cause a denial of service (kernel crash). (CVE-2014-1874). Note that Tenable Network Security has extracted the preceding description block directly from the Ubuntu security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen 2019-02-21
    modified 2018-12-01
    plugin id 72898
    published 2014-03-10
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=72898
    title Ubuntu 12.04 LTS : linux-lts-quantal vulnerabilities (USN-2135-1)
  • NASL family Amazon Linux Local Security Checks
    NASL id ALA_ALAS-2013-258.NASL
    description Multiple buffer underflows in the XFS implementation in the Linux kernel through 3.12.1 allow local users to cause a denial of service (memory corruption) or possibly have unspecified other impact by leveraging the CAP_SYS_ADMIN capability for a (1) XFS_IOC_ATTRLIST_BY_HANDLE or (2) XFS_IOC_ATTRLIST_BY_HANDLE_32 ioctl call with a crafted length value, related to the xfs_attrlist_by_handle function in fs/xfs/xfs_ioctl.c and the xfs_compat_attrlist_by_handle function in fs/xfs/xfs_ioctl32.c.
    last seen 2019-02-21
    modified 2018-04-18
    plugin id 71398
    published 2013-12-14
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=71398
    title Amazon Linux AMI : kernel (ALAS-2013-258)
  • NASL family Ubuntu Local Security Checks
    NASL id UBUNTU_USN-2128-1.NASL
    description An information leak was discovered in the Linux kernel when inotify is used to monitor the /dev/ptmx device. A local user could exploit this flaw to discover keystroke timing and potentially discover sensitive information like password length. (CVE-2013-0160) Vasily Kulikov reported a flaw in the Linux kernel's implementation of ptrace. An unprivileged local user could exploit this flaw to obtain sensitive information from kernel memory. (CVE-2013-2929) Andrew Honig reported a flaw in the Linux Kernel's kvm_vm_ioctl_create_vcpu function of the Kernel Virtual Machine (KVM) subsystem. A local user could exploit this flaw to gain privileges on the host machine. (CVE-2013-4587) Andrew Honig reported a flaw in the apic_get_tmcct function of the Kernel Virtual Machine (KVM) subsystem if the Linux kernel. A guest OS user could exploit this flaw to cause a denial of service or host OS system crash. (CVE-2013-6367) Nico Golde and Fabian Yamaguchi reported a flaw in the driver for Adaptec AACRAID scsi raid devices in the Linux kernel. A local user could use this flaw to cause a denial of service or possibly other unspecified impact. (CVE-2013-6380) Nico Golde and Fabian Yamaguchi reported buffer underflow errors in the implementation of the XFS filesystem in the Linux kernel. A local user with CAP_SYS_ADMIN could exploit these flaw to cause a denial of service (memory corruption) or possibly other unspecified issues. (CVE-2013-6382) Evan Huus reported a buffer overflow in the Linux kernel's radiotap header parsing. A remote attacker could cause a denial of service (buffer over- read) via a specially crafted header. (CVE-2013-7027) An information leak was discovered in the recvfrom, recvmmsg, and recvmsg systemcalls when used with ISDN sockets in the Linux kernel. A local user could exploit this leak to obtain potentially sensitive information from kernel memory. (CVE-2013-7266) An information leak was discovered in the recvfrom, recvmmsg, and recvmsg systemcalls when used with apple talk sockets in the Linux kernel. A local user could exploit this leak to obtain potentially sensitive information from kernel memory. (CVE-2013-7267) An information leak was discovered in the recvfrom, recvmmsg, and recvmsg systemcalls when used with ipx protocol sockets in the Linux kernel. A local user could exploit this leak to obtain potentially sensitive information from kernel memory. (CVE-2013-7268) An information leak was discovered in the recvfrom, recvmmsg, and recvmsg systemcalls when used with the netrom address family in the Linux kernel. A local user could exploit this leak to obtain potentially sensitive information from kernel memory. (CVE-2013-7269) An information leak was discovered in the recvfrom, recvmmsg, and recvmsg systemcalls when used with packet address family sockets in the Linux kernel. A local user could exploit this leak to obtain potentially sensitive information from kernel memory. (CVE-2013-7270) An information leak was discovered in the recvfrom, recvmmsg, and recvmsg systemcalls when used with x25 protocol sockets in the Linux kernel. A local user could exploit this leak to obtain potentially sensitive information from kernel memory. (CVE-2013-7271) An information leak was discovered in the Linux kernel's SIOCWANDEV ioctl call. A local user with the CAP_NET_ADMIN capability could exploit this flaw to obtain potentially sensitive information from kernel memory. (CVE-2014-1444) An information leak was discovered in the wanxl ioctl function the the Linux kernel. A local user could exploit this flaw to obtain potentially sensitive information from kernel memory. (CVE-2014-1445) An information leak was discovered in the Linux kernel's hamradio YAM driver for AX.25 packet radio. A local user with the CAP_NET_ADMIN capability could exploit this flaw to obtain sensitive information from kernel memory. (CVE-2014-1446) Matthew Thode reported a denial of service vulnerability in the Linux kernel when SELinux support is enabled. A local user with the CAP_MAC_ADMIN capability (and the SELinux mac_admin permission if running in enforcing mode) could exploit this flaw to cause a denial of service (kernel crash). (CVE-2014-1874). Note that Tenable Network Security has extracted the preceding description block directly from the Ubuntu security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen 2019-02-21
    modified 2018-12-01
    plugin id 72857
    published 2014-03-06
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=72857
    title Ubuntu 10.04 LTS : linux vulnerabilities (USN-2128-1)
refmap via4
bid 63889
confirm https://bugzilla.redhat.com/show_bug.cgi?id=1033603
mlist
  • [oss-security] 20131122 Linux kernel CVE fixes
  • [xfs] 20131031 [patch] xfs: underflow bug in xfs_attrlist_by_handle()
ubuntu
  • USN-2109-1
  • USN-2110-1
  • USN-2113-1
  • USN-2117-1
  • USN-2128-1
  • USN-2129-1
  • USN-2135-1
  • USN-2138-1
  • USN-2139-1
  • USN-2141-1
  • USN-2158-1
Last major update 30-12-2016 - 21:59
Published 26-11-2013 - 23:43
Back to Top