ID CVE-2011-1019
Summary The dev_load function in net/core/dev.c in the Linux kernel before 2.6.38 allows local users to bypass an intended CAP_SYS_MODULE capability requirement and load arbitrary modules by leveraging the CAP_NET_ADMIN capability.
References
Vulnerable Configurations
  • Linux Kernel 2.6.21.6
    cpe:2.3:o:linux:linux_kernel:2.6.21.6
  • Linux Kernel 2.6.21.3
    cpe:2.3:o:linux:linux_kernel:2.6.21.3
  • Linux Kernel 2.6.21.7
    cpe:2.3:o:linux:linux_kernel:2.6.21.7
  • Linux Kernel 2.6.21.5
    cpe:2.3:o:linux:linux_kernel:2.6.21.5
  • Linux Kernel 2.6.21
    cpe:2.3:o:linux:linux_kernel:2.6.21
  • Linux Kernel 2.6.21.2
    cpe:2.3:o:linux:linux_kernel:2.6.21.2
  • Linux Kernel 2.6.20.3
    cpe:2.3:o:linux:linux_kernel:2.6.20.3
  • Linux Kernel 2.6.20.16
    cpe:2.3:o:linux:linux_kernel:2.6.20.16
  • Linux Kernel 2.6.20.4
    cpe:2.3:o:linux:linux_kernel:2.6.20.4
  • Linux Kernel 2.6.20.5
    cpe:2.3:o:linux:linux_kernel:2.6.20.5
  • Linux Kernel 2.6.20.6
    cpe:2.3:o:linux:linux_kernel:2.6.20.6
  • Linux Kernel 2.6.20.7
    cpe:2.3:o:linux:linux_kernel:2.6.20.7
  • Linux Kernel 2.6.20.8
    cpe:2.3:o:linux:linux_kernel:2.6.20.8
  • Linux Kernel 2.6.20.9
    cpe:2.3:o:linux:linux_kernel:2.6.20.9
  • Linux Kernel 2.6.20.10
    cpe:2.3:o:linux:linux_kernel:2.6.20.10
  • Linux Kernel 2.6.20.11
    cpe:2.3:o:linux:linux_kernel:2.6.20.11
  • Linux Kernel 2.6.20.12
    cpe:2.3:o:linux:linux_kernel:2.6.20.12
  • Linux Kernel 2.6.20.13
    cpe:2.3:o:linux:linux_kernel:2.6.20.13
  • Linux Kernel 2.6.20.14
    cpe:2.3:o:linux:linux_kernel:2.6.20.14
  • Linux Kernel 2.6.20.15
    cpe:2.3:o:linux:linux_kernel:2.6.20.15
  • Linux Kernel 2.6.20.21
    cpe:2.3:o:linux:linux_kernel:2.6.20.21
  • Linux Kernel 2.6.20.18
    cpe:2.3:o:linux:linux_kernel:2.6.20.18
  • Linux Kernel 2.6.20
    cpe:2.3:o:linux:linux_kernel:2.6.20
  • Linux Kernel 2.6.20.17
    cpe:2.3:o:linux:linux_kernel:2.6.20.17
  • Linux Kernel 2.6.20.2
    cpe:2.3:o:linux:linux_kernel:2.6.20.2
  • Linux Kernel 2.6.20.20
    cpe:2.3:o:linux:linux_kernel:2.6.20.20
  • Linux Kernel 2.6.20.19
    cpe:2.3:o:linux:linux_kernel:2.6.20.19
  • Linux Kernel 2.6.20.1
    cpe:2.3:o:linux:linux_kernel:2.6.20.1
  • Linux Kernel 2.6.19.7
    cpe:2.3:o:linux:linux_kernel:2.6.19.7
  • Linux Kernel 2.6.19.5
    cpe:2.3:o:linux:linux_kernel:2.6.19.5
  • Linux Kernel 2.6.19.6
    cpe:2.3:o:linux:linux_kernel:2.6.19.6
  • Linux Kernel 2.6.19.4
    cpe:2.3:o:linux:linux_kernel:2.6.19.4
  • Linux Kernel 2.6.19
    cpe:2.3:o:linux:linux_kernel:2.6.19
  • Linux Kernel 2.6.19.2
    cpe:2.3:o:linux:linux_kernel:2.6.19.2
  • Linux Kernel 2.6.19.1
    cpe:2.3:o:linux:linux_kernel:2.6.19.1
  • Linux Kernel 2.6.19.3
    cpe:2.3:o:linux:linux_kernel:2.6.19.3
  • Linux Kernel 2.6.18 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.18:rc5
  • Linux Kernel 2.6.18 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.18:rc6
  • Linux Kernel 2.6.18 Release Candidate 7
    cpe:2.3:o:linux:linux_kernel:2.6.18:rc7
  • Linux Kernel 2.6.18 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.18:rc1
  • Linux Kernel 2.6.18 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.18:rc2
  • Linux Kernel 2.6.18 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.18:rc3
  • Linux Kernel 2.6.18 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.18:rc4
  • Linux Kernel 2.6.18.1
    cpe:2.3:o:linux:linux_kernel:2.6.18.1
  • Linux Kernel 2.6.18
    cpe:2.3:o:linux:linux_kernel:2.6.18
  • Linux Kernel 2.6.18.3
    cpe:2.3:o:linux:linux_kernel:2.6.18.3
  • Linux Kernel 2.6.18.2
    cpe:2.3:o:linux:linux_kernel:2.6.18.2
  • Linux Kernel 2.6.18.5
    cpe:2.3:o:linux:linux_kernel:2.6.18.5
  • Linux Kernel 2.6.18.4
    cpe:2.3:o:linux:linux_kernel:2.6.18.4
  • Linux Kernel 2.6.18.7
    cpe:2.3:o:linux:linux_kernel:2.6.18.7
  • Linux Kernel 2.6.18.6
    cpe:2.3:o:linux:linux_kernel:2.6.18.6
  • Linux Kernel 2.6.18.8
    cpe:2.3:o:linux:linux_kernel:2.6.18.8
  • Linux Kernel 2.6.17.4
    cpe:2.3:o:linux:linux_kernel:2.6.17.4
  • Linux Kernel 2.6.17.5
    cpe:2.3:o:linux:linux_kernel:2.6.17.5
  • Linux Kernel 2.6.17.2
    cpe:2.3:o:linux:linux_kernel:2.6.17.2
  • Linux Kernel 2.6.17.3
    cpe:2.3:o:linux:linux_kernel:2.6.17.3
  • Linux Kernel 2.6.17
    cpe:2.3:o:linux:linux_kernel:2.6.17
  • Linux Kernel 2.6.17.1
    cpe:2.3:o:linux:linux_kernel:2.6.17.1
  • Linux Kernel 2.6.17.12
    cpe:2.3:o:linux:linux_kernel:2.6.17.12
  • Linux Kernel 2.6.17.13
    cpe:2.3:o:linux:linux_kernel:2.6.17.13
  • Linux Kernel 2.6.17.10
    cpe:2.3:o:linux:linux_kernel:2.6.17.10
  • Linux Kernel 2.6.17.11
    cpe:2.3:o:linux:linux_kernel:2.6.17.11
  • Linux Kernel 2.6.17.8
    cpe:2.3:o:linux:linux_kernel:2.6.17.8
  • Linux Kernel 2.6.17.9
    cpe:2.3:o:linux:linux_kernel:2.6.17.9
  • Linux Kernel 2.6.17.6
    cpe:2.3:o:linux:linux_kernel:2.6.17.6
  • Linux Kernel 2.6.17.7
    cpe:2.3:o:linux:linux_kernel:2.6.17.7
  • Linux Kernel 2.6.17.14
    cpe:2.3:o:linux:linux_kernel:2.6.17.14
  • Linux Kernel 2.6.16.8
    cpe:2.3:o:linux:linux_kernel:2.6.16.8
  • Linux Kernel 2.6.16.7
    cpe:2.3:o:linux:linux_kernel:2.6.16.7
  • Linux Kernel 2.6.16.6
    cpe:2.3:o:linux:linux_kernel:2.6.16.6
  • Linux Kernel 2.6.16.5
    cpe:2.3:o:linux:linux_kernel:2.6.16.5
  • Linux Kernel 2.6.16.12
    cpe:2.3:o:linux:linux_kernel:2.6.16.12
  • Linux Kernel 2.6.16.11
    cpe:2.3:o:linux:linux_kernel:2.6.16.11
  • Linux Kernel 2.6.16.10
    cpe:2.3:o:linux:linux_kernel:2.6.16.10
  • Linux Kernel 2.6.16.9
    cpe:2.3:o:linux:linux_kernel:2.6.16.9
  • Linux Kernel 2.6.16
    cpe:2.3:o:linux:linux_kernel:2.6.16
  • Linux Kernel 2.6.16.4
    cpe:2.3:o:linux:linux_kernel:2.6.16.4
  • Linux Kernel 2.6.16.3
    cpe:2.3:o:linux:linux_kernel:2.6.16.3
  • Linux Kernel 2.6.16.2
    cpe:2.3:o:linux:linux_kernel:2.6.16.2
  • Linux Kernel 2.6.16.1
    cpe:2.3:o:linux:linux_kernel:2.6.16.1
  • Linux Kernel 2.6.16.61
    cpe:2.3:o:linux:linux_kernel:2.6.16.61
  • Linux Kernel 2.6.16.62
    cpe:2.3:o:linux:linux_kernel:2.6.16.62
  • Linux Kernel 2.6.16.52
    cpe:2.3:o:linux:linux_kernel:2.6.16.52
  • Linux Kernel 2.6.16.51
    cpe:2.3:o:linux:linux_kernel:2.6.16.51
  • Linux Kernel 2.6.16.50
    cpe:2.3:o:linux:linux_kernel:2.6.16.50
  • Linux Kernel 2.6.16.49
    cpe:2.3:o:linux:linux_kernel:2.6.16.49
  • Linux Kernel 2.6.16.48
    cpe:2.3:o:linux:linux_kernel:2.6.16.48
  • Linux Kernel 2.6.16.47
    cpe:2.3:o:linux:linux_kernel:2.6.16.47
  • Linux Kernel 2.6.16.46
    cpe:2.3:o:linux:linux_kernel:2.6.16.46
  • Linux Kernel 2.6.16.45
    cpe:2.3:o:linux:linux_kernel:2.6.16.45
  • Linux Kernel 2.6.16.60
    cpe:2.3:o:linux:linux_kernel:2.6.16.60
  • Linux Kernel 2.6.16.59
    cpe:2.3:o:linux:linux_kernel:2.6.16.59
  • Linux Kernel 2.6.16.58
    cpe:2.3:o:linux:linux_kernel:2.6.16.58
  • Linux Kernel 2.6.16.57
    cpe:2.3:o:linux:linux_kernel:2.6.16.57
  • Linux Kernel 2.6.16.56
    cpe:2.3:o:linux:linux_kernel:2.6.16.56
  • Linux Kernel 2.16.55
    cpe:2.3:o:linux:linux_kernel:2.6.16.55
  • Linux Kernel 2.6.16.54
    cpe:2.3:o:linux:linux_kernel:2.6.16.54
  • Linux Kernel 2.6.16.53
    cpe:2.3:o:linux:linux_kernel:2.6.16.53
  • Linux Kernel 2.6.16.33
    cpe:2.3:o:linux:linux_kernel:2.6.16.33
  • Linux Kernel 2.6.16.34
    cpe:2.3:o:linux:linux_kernel:2.6.16.34
  • Linux Kernel 2.6.16.35
    cpe:2.3:o:linux:linux_kernel:2.6.16.35
  • Linux Kernel 2.6.16.36
    cpe:2.3:o:linux:linux_kernel:2.6.16.36
  • Linux Kernel 2.6.16.29
    cpe:2.3:o:linux:linux_kernel:2.6.16.29
  • Linux Kernel 2.6.16.30
    cpe:2.3:o:linux:linux_kernel:2.6.16.30
  • Linux Kernel 2.6.16.31
    cpe:2.3:o:linux:linux_kernel:2.6.16.31
  • Linux Kernel 2.6.16.32
    cpe:2.3:o:linux:linux_kernel:2.6.16.32
  • Linux Kernel 2.6.16.41
    cpe:2.3:o:linux:linux_kernel:2.6.16.41
  • Linux Kernel 2.6.16.42
    cpe:2.3:o:linux:linux_kernel:2.6.16.42
  • Linux Kernel 2.6.16.43
    cpe:2.3:o:linux:linux_kernel:2.6.16.43
  • Linux Kernel 2.6.16.44
    cpe:2.3:o:linux:linux_kernel:2.6.16.44
  • Linux Kernel 2.6.16.37
    cpe:2.3:o:linux:linux_kernel:2.6.16.37
  • Linux Kernel 2.6.16.38
    cpe:2.3:o:linux:linux_kernel:2.6.16.38
  • Linux Kernel 2.6.16.39
    cpe:2.3:o:linux:linux_kernel:2.6.16.39
  • Linux Kernel 2.6.16.40
    cpe:2.3:o:linux:linux_kernel:2.6.16.40
  • Linux Kernel 2.6.16.18
    cpe:2.3:o:linux:linux_kernel:2.6.16.18
  • Linux Kernel 2.6.16.17
    cpe:2.3:o:linux:linux_kernel:2.6.16.17
  • Linux Kernel 2.6.16.20
    cpe:2.3:o:linux:linux_kernel:2.6.16.20
  • Linux Kernel 2.6.16.19
    cpe:2.3:o:linux:linux_kernel:2.6.16.19
  • Linux Kernel 2.6.16.14
    cpe:2.3:o:linux:linux_kernel:2.6.16.14
  • Linux Kernel 2.6.16.13
    cpe:2.3:o:linux:linux_kernel:2.6.16.13
  • Linux Kernel 2.6.16.16
    cpe:2.3:o:linux:linux_kernel:2.6.16.16
  • Linux Kernel 2.6.16.15
    cpe:2.3:o:linux:linux_kernel:2.6.16.15
  • Linux Kernel 2.6.16.26
    cpe:2.3:o:linux:linux_kernel:2.6.16.26
  • Linux Kernel 2.6.16.25
    cpe:2.3:o:linux:linux_kernel:2.6.16.25
  • Linux Kernel 2.6.16.28
    cpe:2.3:o:linux:linux_kernel:2.6.16.28
  • Linux Kernel 2.6.16.27
    cpe:2.3:o:linux:linux_kernel:2.6.16.27
  • Linux Kernel 2.6.16.22
    cpe:2.3:o:linux:linux_kernel:2.6.16.22
  • Linux Kernel 2.6.16.21
    cpe:2.3:o:linux:linux_kernel:2.6.16.21
  • Linux Kernel 2.6.16.24
    cpe:2.3:o:linux:linux_kernel:2.6.16.24
  • Linux Kernel 2.6.16.23
    cpe:2.3:o:linux:linux_kernel:2.6.16.23
  • Linux Kernel 2.6.15.7
    cpe:2.3:o:linux:linux_kernel:2.6.15.7
  • Linux Kernel 2.6.15.6
    cpe:2.3:o:linux:linux_kernel:2.6.15.6
  • Linux Kernel 2.6.15.5
    cpe:2.3:o:linux:linux_kernel:2.6.15.5
  • Linux Kernel 2.6.15
    cpe:2.3:o:linux:linux_kernel:2.6.15
  • Linux Kernel 2.6.15.3
    cpe:2.3:o:linux:linux_kernel:2.6.15.3
  • Linux Kernel 2.6.15.4
    cpe:2.3:o:linux:linux_kernel:2.6.15.4
  • Linux Kernel 2.6.15.1
    cpe:2.3:o:linux:linux_kernel:2.6.15.1
  • Linux Kernel 2.6.15.2
    cpe:2.3:o:linux:linux_kernel:2.6.15.2
  • Linux Kernel 2.6.14.7
    cpe:2.3:o:linux:linux_kernel:2.6.14.7
  • Linux Kernel 2.6.14.5
    cpe:2.3:o:linux:linux_kernel:2.6.14.5
  • Linux Kernel 2.6.14.6
    cpe:2.3:o:linux:linux_kernel:2.6.14.6
  • Linux Kernel 2.6.14
    cpe:2.3:o:linux:linux_kernel:2.6.14
  • Linux Kernel 2.6.14.3
    cpe:2.3:o:linux:linux_kernel:2.6.14.3
  • Linux Kernel 2.6.14.4
    cpe:2.3:o:linux:linux_kernel:2.6.14.4
  • Linux Kernel 2.6.14.1
    cpe:2.3:o:linux:linux_kernel:2.6.14.1
  • Linux Kernel 2.6.14.2
    cpe:2.3:o:linux:linux_kernel:2.6.14.2
  • Linux Kernel 2.6.13.5
    cpe:2.3:o:linux:linux_kernel:2.6.13.5
  • Linux Kernel 2.6.13.3
    cpe:2.3:o:linux:linux_kernel:2.6.13.3
  • Linux Kernel 2.6.13.4
    cpe:2.3:o:linux:linux_kernel:2.6.13.4
  • Linux Kernel 2.6.13
    cpe:2.3:o:linux:linux_kernel:2.6.13
  • Linux Kernel 2.6.13.2
    cpe:2.3:o:linux:linux_kernel:2.6.13.2
  • Linux Kernel 2.6.13.1
    cpe:2.3:o:linux:linux_kernel:2.6.13.1
  • Linux Kernel 2.6.12.3
    cpe:2.3:o:linux:linux_kernel:2.6.12.3
  • Linux Kernel 2.6.12.2
    cpe:2.3:o:linux:linux_kernel:2.6.12.2
  • Linux Kernel 2.6.12.5
    cpe:2.3:o:linux:linux_kernel:2.6.12.5
  • Linux Kernel 2.6.12.4
    cpe:2.3:o:linux:linux_kernel:2.6.12.4
  • Linux Kernel 2.6.12.6
    cpe:2.3:o:linux:linux_kernel:2.6.12.6
  • Linux Kernel 2.6.12.1
    cpe:2.3:o:linux:linux_kernel:2.6.12.1
  • Linux Kernel 2.6.12
    cpe:2.3:o:linux:linux_kernel:2.6.12
  • Linux Kernel 2.6.11.8
    cpe:2.3:o:linux:linux_kernel:2.6.11.8
  • Linux Kernel 2.6.11.7
    cpe:2.3:o:linux:linux_kernel:2.6.11.7
  • Linux Kernel 2.6.11.10
    cpe:2.3:o:linux:linux_kernel:2.6.11.10
  • Linux Kernel 2.6.11.9
    cpe:2.3:o:linux:linux_kernel:2.6.11.9
  • Linux Kernel 2.6.11.12
    cpe:2.3:o:linux:linux_kernel:2.6.11.12
  • Linux Kernel 2.6.11.11
    cpe:2.3:o:linux:linux_kernel:2.6.11.11
  • Linux Kernel 2.6.11
    cpe:2.3:o:linux:linux_kernel:2.6.11
  • Linux Kernel 2.6.11.1
    cpe:2.3:o:linux:linux_kernel:2.6.11.1
  • Linux Kernel 2.6.11.2
    cpe:2.3:o:linux:linux_kernel:2.6.11.2
  • Linux Kernel 2.6.11.3
    cpe:2.3:o:linux:linux_kernel:2.6.11.3
  • Linux Kernel 2.6.11.4
    cpe:2.3:o:linux:linux_kernel:2.6.11.4
  • Linux Kernel 2.6.11.5
    cpe:2.3:o:linux:linux_kernel:2.6.11.5
  • Linux Kernel 2.6.11.6
    cpe:2.3:o:linux:linux_kernel:2.6.11.6
  • Linux Kernel 2.6.10
    cpe:2.3:o:linux:linux_kernel:2.6.10
  • Linux Kernel 2.6.9
    cpe:2.3:o:linux:linux_kernel:2.6.9
  • Linux Kernel 2.6.8
    cpe:2.3:o:linux:linux_kernel:2.6.8
  • Linux Kernel 2.6.8.1
    cpe:2.3:o:linux:linux_kernel:2.6.8.1
  • Linux Kernel 2.6.7
    cpe:2.3:o:linux:linux_kernel:2.6.7
  • Linux Kernel 2.6.6
    cpe:2.3:o:linux:linux_kernel:2.6.6
  • Linux Kernel 2.6.5
    cpe:2.3:o:linux:linux_kernel:2.6.5
  • Linux Kernel 2.6.4
    cpe:2.3:o:linux:linux_kernel:2.6.4
  • Linux Kernel 2.6.3
    cpe:2.3:o:linux:linux_kernel:2.6.3
  • Linux Kernel 2.6.2
    cpe:2.3:o:linux:linux_kernel:2.6.2
  • Linux Kernel 2.6.1
    cpe:2.3:o:linux:linux_kernel:2.6.1
  • Linux Kernel 2.6.0
    cpe:2.3:o:linux:linux_kernel:2.6.0
  • Linux Kernel 2.6.33 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.33:rc4
  • Linux Kernel 2.6.33 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.33:rc2
  • Linux Kernel 2.6.33 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.33:rc3
  • Linux Kernel 2.6.33 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.33:rc6
  • Linux Kernel 2.6.33 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.33:rc5
  • Linux Kernel 2.6.33 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.33:rc1
  • Linux Kernel 2.6.33 Release Candidate 7
    cpe:2.3:o:linux:linux_kernel:2.6.33:rc7
  • Linux Kernel 2.6.32 Release Candidate 7
    cpe:2.3:o:linux:linux_kernel:2.6.32:rc7
  • Linux Kernel 2.6.32 Release Candidate 8
    cpe:2.3:o:linux:linux_kernel:2.6.32:rc8
  • Linux Kernel 2.6.32 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.32:rc4
  • Linux Kernel 2.6.32 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.32:rc3
  • Linux Kernel 2.6.32 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.32:rc1
  • Linux Kernel 2.6.32.5
    cpe:2.3:o:linux:linux_kernel:2.6.32.5
  • Linux Kernel 2.6.32.6
    cpe:2.3:o:linux:linux_kernel:2.6.32.6
  • Linux Kernel 2.6.32.7
    cpe:2.3:o:linux:linux_kernel:2.6.32.7
  • Linux Kernel 2.6.32
    cpe:2.3:o:linux:linux_kernel:2.6.32
  • Linux Kernel 2.6.32.3
    cpe:2.3:o:linux:linux_kernel:2.6.32.3
  • Linux Kernel 2.6.32.2
    cpe:2.3:o:linux:linux_kernel:2.6.32.2
  • Linux Kernel 2.6.32.4
    cpe:2.3:o:linux:linux_kernel:2.6.32.4
  • Linux Kernel 2.6.32.1
    cpe:2.3:o:linux:linux_kernel:2.6.32.1
  • Linux Kernel 2.6.32 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.32:rc6
  • Linux Kernel 2.6.32 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.32:rc5
  • Linux Kernel 2.6.31.1
    cpe:2.3:o:linux:linux_kernel:2.6.31.1
  • Linux Kernel 2.6.31.3
    cpe:2.3:o:linux:linux_kernel:2.6.31.3
  • Linux Kernel 2.6.31.2
    cpe:2.3:o:linux:linux_kernel:2.6.31.2
  • Linux Kernel 2.6.31.4
    cpe:2.3:o:linux:linux_kernel:2.6.31.4
  • Linux Kernel 2.6.31 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.31:rc6
  • Linux Kernel 2.6.31 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.31:rc5
  • Linux Kernel 2.6.31 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.31:rc4
  • Linux Kernel 2.6.31 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.31:rc3
  • Linux Kernel 2.6.31 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.31:rc1
  • Linux Kernel 2.6.31 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.31:rc2
  • Linux Kernel 2.6.31
    cpe:2.3:o:linux:linux_kernel:2.6.31
  • Linux Kernel 2.6.31.5
    cpe:2.3:o:linux:linux_kernel:2.6.31.5
  • Linux Kernel 2.6.31.6
    cpe:2.3:o:linux:linux_kernel:2.6.31.6
  • linux Kernel 2.6.31 Release Candidate 7
    cpe:2.3:o:linux:linux_kernel:2.6.31:rc7
  • linux Kernel 2.6.31 Release Candidate 8
    cpe:2.3:o:linux:linux_kernel:2.6.31:rc8
  • Linux Kernel 2.6.33.1
    cpe:2.3:o:linux:linux_kernel:2.6.33.1
  • Linux Kernel 2.6.32.8
    cpe:2.3:o:linux:linux_kernel:2.6.32.8
  • Linux Kernel 2.6.32.9
    cpe:2.3:o:linux:linux_kernel:2.6.32.9
  • Linux Kernel 2.6.32.10
    cpe:2.3:o:linux:linux_kernel:2.6.32.10
  • Linux Kernel 2.6.31.7
    cpe:2.3:o:linux:linux_kernel:2.6.31.7
  • Linux Kernel 2.6.31.8
    cpe:2.3:o:linux:linux_kernel:2.6.31.8
  • Linux Kernel 2.6.31.9
    cpe:2.3:o:linux:linux_kernel:2.6.31.9
  • Linux Kernel 2.6.31.10
    cpe:2.3:o:linux:linux_kernel:2.6.31.10
  • Linux Kernel 2.6.31.11
    cpe:2.3:o:linux:linux_kernel:2.6.31.11
  • Linux Kernel 2.6.31.12
    cpe:2.3:o:linux:linux_kernel:2.6.31.12
  • Linux Kernel 2.6.30.9
    cpe:2.3:o:linux:linux_kernel:2.6.30.9
  • Linux Kernel 2.6.30.4
    cpe:2.3:o:linux:linux_kernel:2.6.30.4
  • Linux Kernel 2.6.30 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.30:rc3
  • Linux Kernel 2.6.30.2
    cpe:2.3:o:linux:linux_kernel:2.6.30.2
  • Linux Kernel 2.6.30.6
    cpe:2.3:o:linux:linux_kernel:2.6.30.6
  • Linux Kernel 2.6.30.8
    cpe:2.3:o:linux:linux_kernel:2.6.30.8
  • Linux Kernel 2.6.30.7
    cpe:2.3:o:linux:linux_kernel:2.6.30.7
  • Linux Kernel 2.6.30.5
    cpe:2.3:o:linux:linux_kernel:2.6.30.5
  • Linux Kernel 2.6.30.3
    cpe:2.3:o:linux:linux_kernel:2.6.30.3
  • Linux Kernel 2.6.30 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.30:rc6
  • Linux Kernel 2.6.30 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.30:rc2
  • Linux Kernel 2.6.30 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.30:rc5
  • Linux Kernel 2.6.30
    cpe:2.3:o:linux:linux_kernel:2.6.30
  • Linux Kernel 2.6.30.1
    cpe:2.3:o:linux:linux_kernel:2.6.30.1
  • Linux Kernel 2.6.30 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.30:rc1
  • Linux Kernel 2.6.30.10
    cpe:2.3:o:linux:linux_kernel:2.6.30.10
  • Linux Kernel 2.6.29.6
    cpe:2.3:o:linux:linux_kernel:2.6.29.6
  • Linux Kernel 2.6.29.5
    cpe:2.3:o:linux:linux_kernel:2.6.29.5
  • Linux Kernel 2.6.29.4
    cpe:2.3:o:linux:linux_kernel:2.6.29.4
  • Linux Kernel 2.6.29.3
    cpe:2.3:o:linux:linux_kernel:2.6.29.3
  • Linux Kernel 2.6.29.2
    cpe:2.3:o:linux:linux_kernel:2.6.29.2
  • Linux Kernel 2.6.29.1
    cpe:2.3:o:linux:linux_kernel:2.6.29.1
  • Linux Kernel 2.6.29
    cpe:2.3:o:linux:linux_kernel:2.6.29
  • Linux Kernel 2.6.29 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.29:rc1
  • Linux Kernel 2.6.29 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.29:rc2
  • Linux Kernel 2.6.28.5
    cpe:2.3:o:linux:linux_kernel:2.6.28.5
  • Linux Kernel 2.6.28 Release Candidate 7
    cpe:2.3:o:linux:linux_kernel:2.6.28:rc7
  • Linux Kernel 2.6.28.10
    cpe:2.3:o:linux:linux_kernel:2.6.28.10
  • Linux Kernel 2.6.28.8
    cpe:2.3:o:linux:linux_kernel:2.6.28.8
  • Linux Kernel 2.6.28 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.28:rc5
  • Linux Kernel 2.6.28 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.28:rc2
  • Linux Kernel 2.6.28 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.28:rc1
  • Linux Kernel 2.6.28 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.28:rc4
  • Linux Kernel 2.6.28 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.28:rc3
  • Linux Kernel 2.6.28.9
    cpe:2.3:o:linux:linux_kernel:2.6.28.9
  • Linux Kernel 2.6.28
    cpe:2.3:o:linux:linux_kernel:2.6.28
  • Linux Kernel 2.6.28.4
    cpe:2.3:o:linux:linux_kernel:2.6.28.4
  • Linux Kernel 2.6.28.1
    cpe:2.3:o:linux:linux_kernel:2.6.28.1
  • Linux Kernel 2.6.28.6
    cpe:2.3:o:linux:linux_kernel:2.6.28.6
  • Linux Kernel 2.6.28.7
    cpe:2.3:o:linux:linux_kernel:2.6.28.7
  • Linux Kernel 2.6.28 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.28:rc6
  • Linux Kernel 2.6.28.3
    cpe:2.3:o:linux:linux_kernel:2.6.28.3
  • Linux Kernel 2.6.28.2
    cpe:2.3:o:linux:linux_kernel:2.6.28.2
  • Linux Kernel 2.6.27 Release Candidate 9
    cpe:2.3:o:linux:linux_kernel:2.6.27:rc9
  • Linux Kernel 2.6.27 Release Candidate 8
    cpe:2.3:o:linux:linux_kernel:2.6.27:rc8
  • Linux Kernel 2.6.27.20
    cpe:2.3:o:linux:linux_kernel:2.6.27.20
  • Linux Kernel 2.6.27.8
    cpe:2.3:o:linux:linux_kernel:2.6.27.8
  • Linux Kernel 2.6.27.23
    cpe:2.3:o:linux:linux_kernel:2.6.27.23
  • Linux Kernel 2.6.27.24
    cpe:2.3:o:linux:linux_kernel:2.6.27.24
  • Linux Kernel 2.6.27 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.27:rc5
  • Linux Kernel 2.6.27 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.27:rc4
  • Linux Kernel 2.6.27 Release Candidate 7
    cpe:2.3:o:linux:linux_kernel:2.6.27:rc7
  • Linux Kernel 2.6.27 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.27:rc6
  • Linux Kernel 2.6.27 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.27:rc1
  • Linux Kernel 2.6.27 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.27:rc3
  • Linux Kernel 2.6.27 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.27:rc2
  • Linux Kernel 2.6.27.10
    cpe:2.3:o:linux:linux_kernel:2.6.27.10
  • Linux Kernel 2.6.27.9
    cpe:2.3:o:linux:linux_kernel:2.6.27.9
  • Linux Kernel 2.6.27.12
    cpe:2.3:o:linux:linux_kernel:2.6.27.12
  • Linux Kernel 2.6.27.11
    cpe:2.3:o:linux:linux_kernel:2.6.27.11
  • Linux Kernel 2.6.27.22
    cpe:2.3:o:linux:linux_kernel:2.6.27.22
  • Linux Kernel 2.6.27.7
    cpe:2.3:o:linux:linux_kernel:2.6.27.7
  • Linux Kernel 2.6.27.34
    cpe:2.3:o:linux:linux_kernel:2.6.27.34
  • Linux Kernel 2.6.27.33
    cpe:2.3:o:linux:linux_kernel:2.6.27.33
  • Linux Kernel 2.6.27.36
    cpe:2.3:o:linux:linux_kernel:2.6.27.36
  • Linux Kernel 2.6.27.35
    cpe:2.3:o:linux:linux_kernel:2.6.27.35
  • Linux Kernel 2.6.27.37
    cpe:2.3:o:linux:linux_kernel:2.6.27.37
  • Linux Kernel 2.6.27.5
    cpe:2.3:o:linux:linux_kernel:2.6.27.5
  • Linux Kernel 2.6.27.6
    cpe:2.3:o:linux:linux_kernel:2.6.27.6
  • Linux Kernel 2.6.27
    cpe:2.3:o:linux:linux_kernel:2.6.27
  • Linux Kernel 2.6.26.1
    cpe:2.3:o:linux:linux_kernel:2.6.26.1
  • Linux Kernel 2.6.26.3
    cpe:2.3:o:linux:linux_kernel:2.6.26.3
  • Linux Kernel 2.6.26.5
    cpe:2.3:o:linux:linux_kernel:2.6.26.5
  • Linux Kernel 2.6.26.2
    cpe:2.3:o:linux:linux_kernel:2.6.26.2
  • Linux Kernel 2.6.26 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.26:rc4
  • Linux Kernel 2.6.26.8
    cpe:2.3:o:linux:linux_kernel:2.6.26.8
  • Linux Kernel 2.6.26.7
    cpe:2.3:o:linux:linux_kernel:2.6.26.7
  • Linux Kernel 2.6.26.6
    cpe:2.3:o:linux:linux_kernel:2.6.26.6
  • Linux Kernel 2.6.26.4
    cpe:2.3:o:linux:linux_kernel:2.6.26.4
  • Linux Kernel 2.6.26
    cpe:2.3:o:linux:linux_kernel:2.6.26
  • Linux Kernel 2.6.25
    cpe:2.3:o:linux:linux_kernel:2.6.25
  • Linux Kernel 2.6.25.1
    cpe:2.3:o:linux:linux_kernel:2.6.25.1
  • Linux Kernel 2.6.25.10
    cpe:2.3:o:linux:linux_kernel:2.6.25.10
  • Linux Kernel 2.6.25.11
    cpe:2.3:o:linux:linux_kernel:2.6.25.11
  • Linux Kernel 2.6.25.12
    cpe:2.3:o:linux:linux_kernel:2.6.25.12
  • Linux Kernel 2.6.25.13
    cpe:2.3:o:linux:linux_kernel:2.6.25.13
  • Linux Kernel 2.6.25.14
    cpe:2.3:o:linux:linux_kernel:2.6.25.14
  • Linux Kernel 2.6.25.15
    cpe:2.3:o:linux:linux_kernel:2.6.25.15
  • Linux Kernel 2.6.25.16
    cpe:2.3:o:linux:linux_kernel:2.6.25.16
  • Linux Kernel 2.6.25.17
    cpe:2.3:o:linux:linux_kernel:2.6.25.17
  • Linux Kernel 2.6.25.18
    cpe:2.3:o:linux:linux_kernel:2.6.25.18
  • Linux Kernel 2.6.25.19
    cpe:2.3:o:linux:linux_kernel:2.6.25.19
  • Linux Kernel 2.6.25.2
    cpe:2.3:o:linux:linux_kernel:2.6.25.2
  • Linux Kernel 2.6.25.20
    cpe:2.3:o:linux:linux_kernel:2.6.25.20
  • Linux Kernel 2.6.25.3
    cpe:2.3:o:linux:linux_kernel:2.6.25.3
  • Linux Kernel 2.6.25.4
    cpe:2.3:o:linux:linux_kernel:2.6.25.4
  • Linux Kernel 2.6.25.5
    cpe:2.3:o:linux:linux_kernel:2.6.25.5
  • Linux Kernel 2.6.25.6
    cpe:2.3:o:linux:linux_kernel:2.6.25.6
  • Linux Kernel 2.6.25.7
    cpe:2.3:o:linux:linux_kernel:2.6.25.7
  • Linux Kernel 2.6.25.8
    cpe:2.3:o:linux:linux_kernel:2.6.25.8
  • Linux Kernel 2.6.25.9
    cpe:2.3:o:linux:linux_kernel:2.6.25.9
  • Linux Kernel 2.6.24
    cpe:2.3:o:linux:linux_kernel:2.6.24
  • Linux Kernel 2.6.24.1
    cpe:2.3:o:linux:linux_kernel:2.6.24.1
  • Linux Kernel 2.6.24.2
    cpe:2.3:o:linux:linux_kernel:2.6.24.2
  • Linux Kernel 2.6.24.3
    cpe:2.3:o:linux:linux_kernel:2.6.24.3
  • Linux Kernel 2.6.24.4
    cpe:2.3:o:linux:linux_kernel:2.6.24.4
  • Linux Kernel 2.6.24.5
    cpe:2.3:o:linux:linux_kernel:2.6.24.5
  • Linux Kernel 2.6.24.6
    cpe:2.3:o:linux:linux_kernel:2.6.24.6
  • Linux Kernel 2.6.24.7
    cpe:2.3:o:linux:linux_kernel:2.6.24.7
  • Linux Kernel 2.6.24 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.24:rc1
  • Linux Kernel 2.6.24 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.24:rc2
  • Linux Kernel 2.6.24 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.24:rc3
  • Linux Kernel 2.6.24 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.24:rc4
  • Linux Kernel 2.6.24 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.24:rc5
  • Linux Kernel 2.6.23.16
    cpe:2.3:o:linux:linux_kernel:2.6.23.15
  • Linux Kernel 2.6.23.17
    cpe:2.3:o:linux:linux_kernel:2.6.23.17
  • Linux Kernel 2.6.23.16
    cpe:2.3:o:linux:linux_kernel:2.6.23.16
  • Linux Kernel 2.6.23.11
    cpe:2.3:o:linux:linux_kernel:2.6.23.11
  • Linux Kernel 2.6.23.9
    cpe:2.3:o:linux:linux_kernel:2.6.23.9
  • Linux Kernel 2.6.23.13
    cpe:2.3:o:linux:linux_kernel:2.6.23.13
  • Linux Kernel 2.6.23.12
    cpe:2.3:o:linux:linux_kernel:2.6.23.12
  • Linux Kernel 2.6.23.8
    cpe:2.3:o:linux:linux_kernel:2.6.23.8
  • Linux Kernel 2.6.23 release candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.23:rc2
  • Linux Kernel 2.6.23 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.23:rc1
  • Linux Kernel 2.6.23
    cpe:2.3:o:linux:linux_kernel:2.6.23
  • Linux Kernel 2.6.23.10
    cpe:2.3:o:linux:linux_kernel:2.6.23.10
  • Linux Kernel 2.6.23.2
    cpe:2.3:o:linux:linux_kernel:2.6.23.2
  • Linux Kernel 2.6.23.1
    cpe:2.3:o:linux:linux_kernel:2.6.23.1
  • Linux Kernel 2.6.23.6
    cpe:2.3:o:linux:linux_kernel:2.6.23.6
  • Linux Kernel 2.6.23.5
    cpe:2.3:o:linux:linux_kernel:2.6.23.5
  • Linux Kernel 2.6.23.4
    cpe:2.3:o:linux:linux_kernel:2.6.23.4
  • Linux Kernel 2.6.23.3
    cpe:2.3:o:linux:linux_kernel:2.6.23.3
  • Linux Kernel 2.6.23.14
    cpe:2.3:o:linux:linux_kernel:2.6.23.14
  • Linux Kernel 2.6.23.7
    cpe:2.3:o:linux:linux_kernel:2.6.23.7
  • Linux Kernel 2.6.22
    cpe:2.3:o:linux:linux_kernel:2.6.22
  • Linux Kernel 2.6.22.1
    cpe:2.3:o:linux:linux_kernel:2.6.22.1
  • Linux Kernel 2.6.22.5
    cpe:2.3:o:linux:linux_kernel:2.6.22.5
  • Linux Kernel 2.6.22.4
    cpe:2.3:o:linux:linux_kernel:2.6.22.4
  • Linux Kernel 2.6.22.7
    cpe:2.3:o:linux:linux_kernel:2.6.22.7
  • Linux Kernel 2.6.22.6
    cpe:2.3:o:linux:linux_kernel:2.6.22.6
  • Linux Kernel 2.6.22.16
    cpe:2.3:o:linux:linux_kernel:2.6.22.16
  • Linux Kernel 2.6.22.3
    cpe:2.3:o:linux:linux_kernel:2.6.22.3
  • Linux Kernel 2.6.22.22
    cpe:2.3:o:linux:linux_kernel:2.6.22.22
  • Linux Kernel 2.6.22.21
    cpe:2.3:o:linux:linux_kernel:2.6.22.21
  • Linux Kernel 2.6.22.20
    cpe:2.3:o:linux:linux_kernel:2.6.22.20
  • Linux Kernel 2.6.22.19
    cpe:2.3:o:linux:linux_kernel:2.6.22.19
  • Linux Kernel 2.6.22.2
    cpe:2.3:o:linux:linux_kernel:2.6.22.2
  • Linux Kernel 2.6.22.8
    cpe:2.3:o:linux:linux_kernel:2.6.22.8
  • Linux Kernel 2.6.22.9
    cpe:2.3:o:linux:linux_kernel:2.6.22.9
  • Linux Kernel 2.6.22.14
    cpe:2.3:o:linux:linux_kernel:2.6.22.14
  • Linux Kernel 2.6.22.15
    cpe:2.3:o:linux:linux_kernel:2.6.22.15
  • Linux Kernel 2.6.22.17
    cpe:2.3:o:linux:linux_kernel:2.6.22.17
  • Linux Kernel 2.6.22.18
    cpe:2.3:o:linux:linux_kernel:2.6.22.18
  • Linux Kernel 2.6.22.10
    cpe:2.3:o:linux:linux_kernel:2.6.22.10
  • Linux Kernel 2.6.22.11
    cpe:2.3:o:linux:linux_kernel:2.6.22.11
  • Linux Kernel 2.6.22.12
    cpe:2.3:o:linux:linux_kernel:2.6.22.12
  • Linux Kernel 2.6.22.13
    cpe:2.3:o:linux:linux_kernel:2.6.22.13
  • Linux Kernel 2.6.21.4
    cpe:2.3:o:linux:linux_kernel:2.6.21.4
  • Linux Kernel 2.6.33
    cpe:2.3:o:linux:linux_kernel:2.6.33
  • Linux Kernel 2.6.33.2
    cpe:2.3:o:linux:linux_kernel:2.6.33.2
  • Linux Kernel 2.6.33.3
    cpe:2.3:o:linux:linux_kernel:2.6.33.3
  • Linux Kernel 2.6.33.4
    cpe:2.3:o:linux:linux_kernel:2.6.33.4
  • Linux Kernel 2.6.33.5
    cpe:2.3:o:linux:linux_kernel:2.6.33.5
  • Linux Kernel 2.6.33.6
    cpe:2.3:o:linux:linux_kernel:2.6.33.6
  • Linux Kernel 2.6.32.20
    cpe:2.3:o:linux:linux_kernel:2.6.32.20
  • Linux Kernel 2.6.32.19
    cpe:2.3:o:linux:linux_kernel:2.6.32.19
  • Linux Kernel 2.6.32.18
    cpe:2.3:o:linux:linux_kernel:2.6.32.18
  • Linux Kernel 2.6.32.17
    cpe:2.3:o:linux:linux_kernel:2.6.32.17
  • Linux Kernel 2.6.32.16
    cpe:2.3:o:linux:linux_kernel:2.6.32.16
  • Linux Kernel 2.6.32.15
    cpe:2.3:o:linux:linux_kernel:2.6.32.15
  • Linux Kernel 2.6.32.14
    cpe:2.3:o:linux:linux_kernel:2.6.32.14
  • Linux Kernel 2.6.32.13
    cpe:2.3:o:linux:linux_kernel:2.6.32.13
  • Linux Kernel 2.6.32.12
    cpe:2.3:o:linux:linux_kernel:2.6.32.12
  • Linux Kernel 2.6.32.11
    cpe:2.3:o:linux:linux_kernel:2.6.32.11
  • Linux Kernel 2.6.31.14
    cpe:2.3:o:linux:linux_kernel:2.6.31.14
  • Linux Kernel 2.6.31.13
    cpe:2.3:o:linux:linux_kernel:2.6.31.13
  • Linux Kernel 2.6.33.7
    cpe:2.3:o:linux:linux_kernel:2.6.33.7
  • Linux Kernel 2.6.34.7
    cpe:2.3:o:linux:linux_kernel:2.6.34.7
  • Linux Kernel 2.6.34.6
    cpe:2.3:o:linux:linux_kernel:2.6.34.6
  • Linux Kernel 2.6.34.5
    cpe:2.3:o:linux:linux_kernel:2.6.34.5
  • Linux Kernel 2.6.34.4
    cpe:2.3:o:linux:linux_kernel:2.6.34.4
  • Linux Kernel 2.6.34.3
    cpe:2.3:o:linux:linux_kernel:2.6.34.3
  • Linux Kernel 2.6.34.2
    cpe:2.3:o:linux:linux_kernel:2.6.34.2
  • Linux Kernel 2.6.34.1
    cpe:2.3:o:linux:linux_kernel:2.6.34.1
  • Linux Kernel 2.6.34
    cpe:2.3:o:linux:linux_kernel:2.6.34
  • Linux Kernel 2.6.35
    cpe:2.3:o:linux:linux_kernel:2.6.35
  • Linux Kernel 2.6.35.1
    cpe:2.3:o:linux:linux_kernel:2.6.35.1
  • Linux Kernel 2.6.35.2
    cpe:2.3:o:linux:linux_kernel:2.6.35.2
  • Linux Kernel 2.6.35.3
    cpe:2.3:o:linux:linux_kernel:2.6.35.3
  • Linux Kernel 2.6.35.4
    cpe:2.3:o:linux:linux_kernel:2.6.35.4
  • Linux Kernel 2.6.35.5
    cpe:2.3:o:linux:linux_kernel:2.6.35.5
  • Linux Kernel 2.6.35.6
    cpe:2.3:o:linux:linux_kernel:2.6.35.6
  • Linux Kernel 2.6.35.7
    cpe:2.3:o:linux:linux_kernel:2.6.35.7
  • Linux Kernel 2.6.35.8
    cpe:2.3:o:linux:linux_kernel:2.6.35.8
  • Linux Kernel 2.6.36
    cpe:2.3:o:linux:linux_kernel:2.6.36
  • Linux Kernel 2.6.36.1
    cpe:2.3:o:linux:linux_kernel:2.6.36.1
  • Linux Kernel 2.6.36.2
    cpe:2.3:o:linux:linux_kernel:2.6.36.2
  • Linux Kernel 2.6.21.1
    cpe:2.3:o:linux:linux_kernel:2.6.21.1
  • Linux Kernel 2.6.37 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.37:rc1
  • Linux Kernel 2.6.37 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.37:rc2
  • Linux Kernel 2.6.37 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.37:rc3
  • Linux Kernel 2.6.37 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.37:rc4
  • Linux Kernel 2.6.37 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.37:rc5
  • Linux Kernel 2.6.37 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.37:rc6
  • Linux Kernel 2.6.37 Release Candidate 7
    cpe:2.3:o:linux:linux_kernel:2.6.37:rc7
  • Linux Kernel 2.6.37 Release Candidate 8
    cpe:2.3:o:linux:linux_kernel:2.6.37:rc8
  • Linux Kernel 2.6.37
    cpe:2.3:o:linux:linux_kernel:2.6.37
  • Linux Kernel 2.6.37.1
    cpe:2.3:o:linux:linux_kernel:2.6.37.1
  • Linux Kernel 2.6.37.2
    cpe:2.3:o:linux:linux_kernel:2.6.37.2
  • Linux Kernel 2.6.37.3
    cpe:2.3:o:linux:linux_kernel:2.6.37.3
  • Linux Kernel 2.6.37.4
    cpe:2.3:o:linux:linux_kernel:2.6.37.4
  • Linux Kernel 2.6.37.5
    cpe:2.3:o:linux:linux_kernel:2.6.37.5
  • Linux Kernel 2.6.38 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.38:rc5
  • Linux Kernel 2.6.38 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.38:rc6
  • Linux Kernel 2.6.38 Release Candidate 7
    cpe:2.3:o:linux:linux_kernel:2.6.38:rc7
  • Linux Kernel 2.6.38
    cpe:2.3:o:linux:linux_kernel:2.6.38
  • Linux Kernel 2.6.38.1
    cpe:2.3:o:linux:linux_kernel:2.6.38.1
  • Linux Kernel 2.6.38.2
    cpe:2.3:o:linux:linux_kernel:2.6.38.2
  • Linux Kernel 2.6.38 Release Candidate 8
    cpe:2.3:o:linux:linux_kernel:2.6.38:rc8
  • Linux Kernel 2.6.27.21
    cpe:2.3:o:linux:linux_kernel:2.6.27.21
  • Linux Kernel 2.6.27.25
    cpe:2.3:o:linux:linux_kernel:2.6.27.25
  • Linux Kernel 2.6.27.26
    cpe:2.3:o:linux:linux_kernel:2.6.27.26
  • Linux Kernel 2.6.27.27
    cpe:2.3:o:linux:linux_kernel:2.6.27.27
  • Linux Kernel 2.6.27.28
    cpe:2.3:o:linux:linux_kernel:2.6.27.28
  • Linux Kernel 2.6.27.29
    cpe:2.3:o:linux:linux_kernel:2.6.27.29
  • Linux Kernel 2.6.27.30
    cpe:2.3:o:linux:linux_kernel:2.6.27.30
  • Linux Kernel 2.6.27.31
    cpe:2.3:o:linux:linux_kernel:2.6.27.31
  • Linux Kernel 2.6.27.32
    cpe:2.3:o:linux:linux_kernel:2.6.27.32
  • Linux Kernel 2.6.27.13
    cpe:2.3:o:linux:linux_kernel:2.6.27.13
  • Linux Kernel 2.6.27.14
    cpe:2.3:o:linux:linux_kernel:2.6.27.14
  • Linux Kernel 2.6.27.15
    cpe:2.3:o:linux:linux_kernel:2.6.27.15
  • Linux Kernel 2.6.27.16
    cpe:2.3:o:linux:linux_kernel:2.6.27.16
  • Linux Kernel 2.6.27.17
    cpe:2.3:o:linux:linux_kernel:2.6.27.17
  • Linux Kernel 2.6.27.18
    cpe:2.3:o:linux:linux_kernel:2.6.27.18
  • Linux Kernel 2.6.27.19
    cpe:2.3:o:linux:linux_kernel:2.6.27.19
  • Linux Kernel 2.6.27.40
    cpe:2.3:o:linux:linux_kernel:2.6.27.40
  • Linux Kernel 2.6.27.38
    cpe:2.3:o:linux:linux_kernel:2.6.27.38
  • Linux Kernel 2.6.27.39
    cpe:2.3:o:linux:linux_kernel:2.6.27.39
  • Linux Kernel 2.6.27.41
    cpe:2.3:o:linux:linux_kernel:2.6.27.41
  • Linux Kernel 2.6.27.42
    cpe:2.3:o:linux:linux_kernel:2.6.27.42
  • Linux Kernel 2.6.27.43
    cpe:2.3:o:linux:linux_kernel:2.6.27.43
  • Linux Kernel 2.6.27.44
    cpe:2.3:o:linux:linux_kernel:2.6.27.44
  • Linux Kernel 2.6.27.45
    cpe:2.3:o:linux:linux_kernel:2.6.27.45
  • Linux Kernel 2.6.27.46
    cpe:2.3:o:linux:linux_kernel:2.6.27.46
  • Linux Kernel 2.6.27.47
    cpe:2.3:o:linux:linux_kernel:2.6.27.47
  • Linux Kernel 2.6.27.48
    cpe:2.3:o:linux:linux_kernel:2.6.27.48
  • Linux Kernel 2.6.27.49
    cpe:2.3:o:linux:linux_kernel:2.6.27.49
  • Linux Kernel 2.6.27.50
    cpe:2.3:o:linux:linux_kernel:2.6.27.50
  • Linux Kernel 2.6.27.51
    cpe:2.3:o:linux:linux_kernel:2.6.27.51
  • Linux Kernel 2.6.27.52
    cpe:2.3:o:linux:linux_kernel:2.6.27.52
  • Linux Kernel 2.6.27.53
    cpe:2.3:o:linux:linux_kernel:2.6.27.53
  • Linux Kernel 2.6.27.54
    cpe:2.3:o:linux:linux_kernel:2.6.27.54
  • Linux Kernel 2.6.27.55
    cpe:2.3:o:linux:linux_kernel:2.6.27.55
  • Linux Kernel 2.6.27.56
    cpe:2.3:o:linux:linux_kernel:2.6.27.56
  • Linux Kernel 2.6.27.57
    cpe:2.3:o:linux:linux_kernel:2.6.27.57
  • Linux Kernel 2.6.27.2
    cpe:2.3:o:linux:linux_kernel:2.6.27.2
  • Linux Kernel 2.6.27.1
    cpe:2.3:o:linux:linux_kernel:2.6.27.1
  • Linux Kernel 2.6.27.3
    cpe:2.3:o:linux:linux_kernel:2.6.27.3
  • Linux Kernel 2.6.27.4
    cpe:2.3:o:linux:linux_kernel:2.6.27.4
  • Linux Kernel 2.6.32.21
    cpe:2.3:o:linux:linux_kernel:2.6.32.21
  • Linux Kernel 2.6.32.22
    cpe:2.3:o:linux:linux_kernel:2.6.32.22
  • Linux Kernel 2.6.32.23
    cpe:2.3:o:linux:linux_kernel:2.6.32.23
  • Linux Kernel 2.6.32.24
    cpe:2.3:o:linux:linux_kernel:2.6.32.24
  • Linux Kernel 2.6.32.25
    cpe:2.3:o:linux:linux_kernel:2.6.32.25
  • Linux Kernel 2.6.32.26
    cpe:2.3:o:linux:linux_kernel:2.6.32.26
  • Linux Kernel 2.6.32.27
    cpe:2.3:o:linux:linux_kernel:2.6.32.27
  • Linux Kernel 2.6.35.9
    cpe:2.3:o:linux:linux_kernel:2.6.35.9
  • Linux Kernel 2.6.36.3
    cpe:2.3:o:linux:linux_kernel:2.6.36.3
  • Linux Kernel 2.6.36.4
    cpe:2.3:o:linux:linux_kernel:2.6.36.4
  • Linux Kernel 2.6.1 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.1:rc1
  • Linux Kernel 2.6.1 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.1:rc2
  • Linux Kernel 2.6.1 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.1:rc3
  • Linux Kernel 2.6.2 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.2:rc2
  • Linux Kernel 2.6.2 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.2:rc1
  • Linux Kernel 2.6.2 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.2:rc3
  • Linux Kernel 2.6.3 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.3:rc3
  • Linux Kernel 2.6.3 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.3:rc1
  • Linux Kernel 2.6.3 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.3:rc2
  • Linux Kernel 2.6.3 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.3:rc4
  • Linux Kernel 2.6.4 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.4:rc1
  • Linux Kernel 2.6.4 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.4:rc2
  • Linux Kernel 2.6.4 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.4:rc3
  • Linux Kernel 2.6.5 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.5:rc1
  • Linux Kernel 2.6.5 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.5:rc2
  • Linux Kernel 2.6.5 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.5:rc3
  • Linux Kernel 2.6.6 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.6:rc1
  • Linux Kernel 2.6.6 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.6:rc2
  • Linux Kernel 2.6.6 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.6:rc3
  • Linux Kernel 2.6.7 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.7:rc1
  • Linux Kernel 2.6.7 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.7:rc2
  • Linux Kernel 2.6.7 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.7:rc3
  • Linux Kernel 2.6.8 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.8:rc1
  • Linux Kernel 2.6.8 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.8:rc2
  • Linux Kernel 2.6.8 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.8:rc3
  • Linux Kernel 2.6.8 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.8:rc4
  • Linux Kernel 2.6.9 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.9:rc1
  • Linux Kernel 2.6.9 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.9:rc2
  • Linux Kernel 2.6.9 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.9:rc3
  • Linux Kernel 2.6.9 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.9:rc4
  • Linux Kernel 2.6.10 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.10:rc1
  • Linux Kernel 2.6.10 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.10:rc2
  • Linux Kernel 2.6.10 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.10:rc3
  • Linux Kernel 2.6.11 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.11:rc1
  • Linux Kernel 2.6.11 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.11:rc2
  • Linux Kernel 2.6.11 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.11:rc3
  • Linux Kernel 2.6.11 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.11:rc4
  • Linux Kernel 2.6.11 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.11:rc5
  • Linux Kernel 2.6.12 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.12:rc1
  • Linux Kernel 2.6.12 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.12:rc2
  • Linux Kernel 2.6.12 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.12:rc3
  • Linux Kernel 2.6.12 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.12:rc4
  • Linux Kernel 2.6.12 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.12:rc5
  • Linux Kernel 2.6.12 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.12:rc6
  • Linux Kernel 2.6.13 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.13:rc1
  • Linux Kernel 2.6.13 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.13:rc2
  • Linux Kernel 2.6.13 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.13:rc3
  • Linux Kernel 2.6.13 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.13:rc4
  • Linux Kernel 2.6.13 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.13:rc5
  • Linux Kernel 2.6.13 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.13:rc6
  • Linux Kernel 2.6.13 Release Candidate 7
    cpe:2.3:o:linux:linux_kernel:2.6.13:rc7
  • Linux Kernel 2.6.14 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.14:rc1
  • Linux Kernel 2.6.14 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.14:rc2
  • Linux Kernel 2.6.14 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.14:rc3
  • Linux Kernel 2.6.14 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.14:rc4
  • Linux Kernel 2.6.14 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.14:rc5
  • Linux Kernel 2.6.15 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.15:rc1
  • Linux Kernel 2.6.15 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.15:rc2
  • Linux Kernel 2.6.15 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.15:rc3
  • Linux Kernel 2.6.15 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.15:rc4
  • Linux Kernel 2.6.15 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.15:rc5
  • Linux Kernel 2.6.15 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.15:rc6
  • Linux Kernel 2.6.15 Release Candidate 7
    cpe:2.3:o:linux:linux_kernel:2.6.15:rc7
  • Linux Kernel 2.6.16 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.16:rc1
  • Linux Kernel 2.6.16 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.16:rc2
  • Linux Kernel 2.6.16 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.16:rc3
  • Linux Kernel 2.6.16 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.16:rc4
  • Linux Kernel 2.6.16 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.16:rc5
  • Linux Kernel 2.6.16 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.16:rc6
  • Linux Kernel 2.6.17 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.17:rc1
  • Linux Kernel 2.6.17 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.17:rc2
  • Linux Kernel 2.6.17 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.17:rc3
  • Linux Kernel 2.6.17 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.17:rc4
  • Linux Kernel 2.6.17 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.17:rc5
  • Linux Kernel 2.6.17 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.17:rc6
  • Linux Kernel 2.6.19 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.19:rc1
  • Linux Kernel 2.6.19 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.19:rc2
  • Linux Kernel 2.6.19 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.19:rc3
  • Linux Kernel 2.6.19 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.19:rc4
  • Linux Kernel 2.6.19 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.19:rc5
  • Linux Kernel 2.6.19 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.19:rc6
  • Linux Kernel 2.6.20 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.20:rc1
  • Linux Kernel 2.6.20 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.20:rc2
  • Linux Kernel 2.6.20 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.20:rc3
  • Linux Kernel 2.6.20 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.20:rc4
  • Linux Kernel 2.6.20 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.20:rc5
  • Linux Kernel 2.6.20 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.20:rc6
  • Linux Kernel 2.6.20 Release Candidate 7
    cpe:2.3:o:linux:linux_kernel:2.6.20:rc7
  • Linux Kernel 2.6.21 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.21:rc1
  • Linux Kernel 2.6.21 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.21:rc2
  • Linux Kernel 2.6.21 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.21:rc3
  • Linux Kernel 2.6.21 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.21:rc4
  • Linux Kernel 2.6.21 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.21:rc5
  • Linux Kernel 2.6.21 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.21:rc6
  • Linux Kernel 2.6.21 Release Candidate 7
    cpe:2.3:o:linux:linux_kernel:2.6.21:rc7
  • Linux Kernel 2.6.22 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.22:rc1
  • Linux Kernel 2.6.22 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.22:rc2
  • Linux Kernel 2.6.22 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.22:rc3
  • Linux Kernel 2.6.22 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.22:rc4
  • Linux Kernel 2.6.22 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.22:rc5
  • Linux Kernel 2.6.22 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.22:rc6
  • Linux Kernel 2.6.22 Release Candidate 7
    cpe:2.3:o:linux:linux_kernel:2.6.22:rc7
  • Linux Kernel 2.6.23 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.23:rc3
  • Linux Kernel 2.6.23 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.23:rc4
  • Linux Kernel 2.6.23 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.23:rc5
  • Linux Kernel 2.6.23 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.23:rc6
  • Linux Kernel 2.6.23 Release Candidate 7
    cpe:2.3:o:linux:linux_kernel:2.6.23:rc7
  • Linux Kernel 2.6.23 Release Candidate 8
    cpe:2.3:o:linux:linux_kernel:2.6.23:rc8
  • Linux Kernel 2.6.23 Release Candidate 9
    cpe:2.3:o:linux:linux_kernel:2.6.23:rc9
  • Linux Kernel 2.6.24 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.24:rc6
  • Linux Kernel 2.6.24 Release Candidate 7
    cpe:2.3:o:linux:linux_kernel:2.6.24:rc7
  • Linux Kernel 2.6.24 Release Candidate 8
    cpe:2.3:o:linux:linux_kernel:2.6.24:rc8
  • Linux Kernel 2.6.25 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.25:rc1
  • Linux Kernel 2.6.25 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.25:rc2
  • Linux Kernel 2.6.25 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.25:rc3
  • Linux Kernel 2.6.25 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.25:rc4
  • Linux Kernel 2.6.25 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.25:rc5
  • Linux Kernel 2.6.25 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.25:rc6
  • Linux Kernel 2.6.25 Release Candidate 7
    cpe:2.3:o:linux:linux_kernel:2.6.25:rc7
  • Linux Kernel 2.6.25 Release Candidate 8
    cpe:2.3:o:linux:linux_kernel:2.6.25:rc8
  • Linux Kernel 2.6.25 Release Candidate 9
    cpe:2.3:o:linux:linux_kernel:2.6.25:rc9
  • Linux Kernel 2.6.26 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.26:rc1
  • Linux Kernel 2.6.26 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.26:rc2
  • Linux Kernel 2.6.26 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.26:rc3
  • Linux Kernel 2.6.26 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.26:rc5
  • Linux Kernel 2.6.26 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.26:rc6
  • Linux Kernel 2.6.26 Release Candidate 7
    cpe:2.3:o:linux:linux_kernel:2.6.26:rc7
  • Linux Kernel 2.6.26 Release Candidate 8
    cpe:2.3:o:linux:linux_kernel:2.6.26:rc8
  • Linux Kernel 2.6.26 Release Candidate 9
    cpe:2.3:o:linux:linux_kernel:2.6.26:rc9
  • Linux Kernel 2.6.28 Release Candidate 8
    cpe:2.3:o:linux:linux_kernel:2.6.28:rc8
  • Linux Kernel 2.6.28 Release Candidate 9
    cpe:2.3:o:linux:linux_kernel:2.6.28:rc9
  • Linux Kernel 2.6.29 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.29:rc3
  • Linux Kernel 2.6.29 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.29:rc4
  • Linux Kernel 2.6.29 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.29:rc5
  • Linux Kernel 2.6.29 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.29:rc6
  • Linux Kernel 2.6.29 Release Candidate 7
    cpe:2.3:o:linux:linux_kernel:2.6.29:rc7
  • Linux Kernel 2.6.29 Release Candidate 8
    cpe:2.3:o:linux:linux_kernel:2.6.29:rc8
  • Linux Kernel 2.6.30 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.30:rc4
  • Linux Kernel 2.6.30 Release Candidate 7
    cpe:2.3:o:linux:linux_kernel:2.6.30:rc7
  • Linux Kernel 2.6.30 Release Candidate 8
    cpe:2.3:o:linux:linux_kernel:2.6.30:rc8
  • linux Kernel 2.6.31 Release Candidate 9
    cpe:2.3:o:linux:linux_kernel:2.6.31:rc9
  • Linux Kernel 2.6.33 Release Candidate 8
    cpe:2.3:o:linux:linux_kernel:2.6.33:rc8
  • Linux Kernel 2.6.34 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.34:rc5
  • Linux Kernel 2.6.34 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.34:rc4
  • Linux Kernel 2.6.34 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.34:rc2
  • Linux Kernel 2.6.34 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.34:rc3
  • Linux Kernel 2.6.34 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.34:rc1
  • Linux Kernel 2.6.34 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.34:rc6
  • Linux Kernel 2.6.34 Release Candidate 7
    cpe:2.3:o:linux:linux_kernel:2.6.34:rc7
  • Linux Kernel 2.6.35 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.35:rc3
  • Linux Kernel 2.6.35 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.35:rc4
  • Linux Kernel 2.6.35 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.35:rc1
  • Linux Kernel 2.6.35 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.35:rc2
  • Linux Kernel 2.6.35 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.35:rc5
  • Linux Kernel 2.6.35 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.35:rc6
  • Linux Kernel 2.6.36 Release Candidate 8
    cpe:2.3:o:linux:linux_kernel:2.6.36:rc8
  • Linux Kernel 2.6.36 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.36:rc4
  • Linux Kernel 2.6.36 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.36:rc1
  • Linux Kernel 2.6.36 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.36:rc2
  • Linux Kernel 2.6.36 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.36:rc5
  • Linux Kernel 2.6.36 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.36:rc3
  • Linux Kernel 2.6.36 Release Candidate 7
    cpe:2.3:o:linux:linux_kernel:2.6.36:rc7
  • Linux Kernel 2.6.36 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.36:rc6
CVSS
Base: 1.9 (as of 04-03-2013 - 09:41)
Impact:
Exploitability:
CWE CWE-264
CAPEC
  • Accessing, Modifying or Executing Executable Files
    An attack of this type exploits a system's configuration that allows an attacker to either directly access an executable file, for example through shell access; or in a possible worst case allows an attacker to upload a file and then execute it. Web servers, ftp servers, and message oriented middleware systems which have many integration points are particularly vulnerable, because both the programmers and the administrators must be in synch regarding the interfaces and the correct privileges for each interface.
  • Leverage Executable Code in Non-Executable Files
    An attack of this type exploits a system's trust in configuration and resource files, when the executable loads the resource (such as an image file or configuration file) the attacker has modified the file to either execute malicious code directly or manipulate the target process (e.g. application server) to execute based on the malicious configuration parameters. Since systems are increasingly interrelated mashing up resources from local and remote sources the possibility of this attack occurring is high. The attack can be directed at a client system, such as causing buffer overrun through loading seemingly benign image files, as in Microsoft Security Bulletin MS04-028 where specially crafted JPEG files could cause a buffer overrun once loaded into the browser. Another example targets clients reading pdf files. In this case the attacker simply appends javascript to the end of a legitimate url for a pdf (http://www.gnucitizen.org/blog/danger-danger-danger/) http://path/to/pdf/file.pdf#whatever_name_you_want=javascript:your_code_here The client assumes that they are reading a pdf, but the attacker has modified the resource and loaded executable javascript into the client's browser process. The attack can also target server processes. The attacker edits the resource or configuration file, for example a web.xml file used to configure security permissions for a J2EE app server, adding role name "public" grants all users with the public role the ability to use the administration functionality. The server trusts its configuration file to be correct, but when they are manipulated, the attacker gains full control.
  • Blue Boxing
    This type of attack against older telephone switches and trunks has been around for decades. A tone is sent by an adversary to impersonate a supervisor signal which has the effect of rerouting or usurping command of the line. While the US infrastructure proper may not contain widespread vulnerabilities to this type of attack, many companies are connected globally through call centers and business process outsourcing. These international systems may be operated in countries which have not upgraded Telco infrastructure and so are vulnerable to Blue boxing. Blue boxing is a result of failure on the part of the system to enforce strong authorization for administrative functions. While the infrastructure is different than standard current applications like web applications, there are historical lessons to be learned to upgrade the access control for administrative functions.
  • Restful Privilege Elevation
    Rest uses standard HTTP (Get, Put, Delete) style permissions methods, but these are not necessarily correlated generally with back end programs. Strict interpretation of HTTP get methods means that these HTTP Get services should not be used to delete information on the server, but there is no access control mechanism to back up this logic. This means that unless the services are properly ACL'd and the application's service implementation are following these guidelines then an HTTP request can easily execute a delete or update on the server side. The attacker identifies a HTTP Get URL such as http://victimsite/updateOrder, which calls out to a program to update orders on a database or other resource. The URL is not idempotent so the request can be submitted multiple times by the attacker, additionally, the attacker may be able to exploit the URL published as a Get method that actually performs updates (instead of merely retrieving data). This may result in malicious or inadvertent altering of data on the server.
  • Target Programs with Elevated Privileges
    This attack targets programs running with elevated privileges. The attacker would try to leverage a bug in the running program and get arbitrary code to execute with elevated privileges. For instance an attacker would look for programs that write to the system directories or registry keys (such as HKLM, which stores a number of critical Windows environment variables). These programs are typically running with elevated privileges and have usually not been designed with security in mind. Such programs are excellent exploit targets because they yield lots of power when they break. The malicious user try to execute its code at the same level as a privileged system call.
  • Manipulating Input to File System Calls
    An attacker manipulates inputs to the target software which the target software passes to file system calls in the OS. The goal is to gain access to, and perhaps modify, areas of the file system that the target software did not intend to be accessible.
Access
VectorComplexityAuthentication
LOCAL MEDIUM NONE
Impact
ConfidentialityIntegrityAvailability
NONE PARTIAL NONE
nessus via4
  • NASL family Ubuntu Local Security Checks
    NASL id UBUNTU_USN-1202-1.NASL
    description Dan Rosenberg discovered that several network ioctls did not clear kernel memory correctly. A local user could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-3296, CVE-2010-3297) Brad Spengler discovered that stack memory for new a process was not correctly calculated. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-3858) Dan Rosenberg discovered that the Linux kernel TIPC implementation contained multiple integer signedness errors. A local attacker could exploit this to gain root privileges. (CVE-2010-3859) Dan Rosenberg discovered that the CAN protocol on 64bit systems did not correctly calculate the size of certain buffers. A local attacker could exploit this to crash the system or possibly execute arbitrary code as the root user. (CVE-2010-3874) Nelson Elhage discovered that the Linux kernel IPv4 implementation did not properly audit certain bytecodes in netlink messages. A local attacker could exploit this to cause the kernel to hang, leading to a denial of service. (CVE-2010-3880) Dan Rosenberg discovered that IPC structures were not correctly initialized on 64bit systems. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4073) Dan Rosenberg discovered that multiple terminal ioctls did not correctly initialize structure memory. A local attacker could exploit this to read portions of kernel stack memory, leading to a loss of privacy. (CVE-2010-4075, CVE-2010-4076, CVE-2010-4077) Dan Rosenberg discovered that the RME Hammerfall DSP audio interface driver did not correctly clear kernel memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4080, CVE-2010-4081) Dan Rosenberg discovered that the VIA video driver did not correctly clear kernel memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4082) Dan Rosenberg discovered that the semctl syscall did not correctly clear kernel memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4083) James Bottomley discovered that the ICP vortex storage array controller driver did not validate certain sizes. A local attacker on a 64bit system could exploit this to crash the kernel, leading to a denial of service. (CVE-2010-4157) Dan Rosenberg discovered that the Linux kernel L2TP implementation contained multiple integer signedness errors. A local attacker could exploit this to to crash the kernel, or possibly gain root privileges. (CVE-2010-4160) Dan Rosenberg discovered that certain iovec operations did not calculate page counts correctly. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4162) Dan Rosenberg discovered that the SCSI subsystem did not correctly validate iov segments. A local attacker with access to a SCSI device could send specially crafted requests to crash the system, leading to a denial of service. (CVE-2010-4163, CVE-2010-4668) Dave Jones discovered that the mprotect system call did not correctly handle merged VMAs. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4169) Dan Rosenberg discovered that the RDS protocol did not correctly check ioctl arguments. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4175) Alan Cox discovered that the HCI UART driver did not correctly check if a write operation was available. If the mmap_min-addr sysctl was changed from the Ubuntu default to a value of 0, a local attacker could exploit this flaw to gain root privileges. (CVE-2010-4242) Brad Spengler discovered that the kernel did not correctly account for userspace memory allocations during exec() calls. A local attacker could exploit this to consume all system memory, leading to a denial of service. (CVE-2010-4243) It was discovered that multithreaded exec did not handle CPU timers correctly. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4248) It was discovered that named pipes did not correctly handle certain fcntl calls. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4256) Dan Rosenburg discovered that the CAN subsystem leaked kernel addresses into the /proc filesystem. A local attacker could use this to increase the chances of a successful memory corruption exploit. (CVE-2010-4565) Dan Carpenter discovered that the Infiniband driver did not correctly handle certain requests. A local user could exploit this to crash the system or potentially gain root privileges. (CVE-2010-4649, CVE-2011-1044) Kees Cook discovered that some ethtool functions did not correctly clear heap memory. A local attacker with CAP_NET_ADMIN privileges could exploit this to read portions of kernel heap memory, leading to a loss of privacy. (CVE-2010-4655) Kees Cook discovered that the IOWarrior USB device driver did not correctly check certain size fields. A local attacker with physical access could plug in a specially crafted USB device to crash the system or potentially gain root privileges. (CVE-2010-4656) Goldwyn Rodrigues discovered that the OCFS2 filesystem did not correctly clear memory when writing certain file holes. A local attacker could exploit this to read uninitialized data from the disk, leading to a loss of privacy. (CVE-2011-0463) Dan Carpenter discovered that the TTPCI DVB driver did not check certain values during an ioctl. If the dvb-ttpci module was loaded, a local attacker could exploit this to crash the system, leading to a denial of service, or possibly gain root privileges. (CVE-2011-0521) Jens Kuehnel discovered that the InfiniBand driver contained a race condition. On systems using InfiniBand, a local attacker could send specially crafted requests to crash the system, leading to a denial of service. (CVE-2011-0695) Dan Rosenberg discovered that XFS did not correctly initialize memory. A local attacker could make crafted ioctl calls to leak portions of kernel stack memory, leading to a loss of privacy. (CVE-2011-0711) Rafael Dominguez Vega discovered that the caiaq Native Instruments USB driver did not correctly validate string lengths. A local attacker with physical access could plug in a specially crafted USB device to crash the system or potentially gain root privileges. (CVE-2011-0712) Kees Cook reported that /proc/pid/stat did not correctly filter certain memory locations. A local attacker could determine the memory layout of processes in an attempt to increase the chances of a successful memory corruption exploit. (CVE-2011-0726) Timo Warns discovered that MAC partition parsing routines did not correctly calculate block counts. A local attacker with physical access could plug in a specially crafted block device to crash the system or potentially gain root privileges. (CVE-2011-1010) Timo Warns discovered that LDM partition parsing routines did not correctly calculate block counts. A local attacker with physical access could plug in a specially crafted block device to crash the system, leading to a denial of service. (CVE-2011-1012) Matthiew Herrb discovered that the drm modeset interface did not correctly handle a signed comparison. A local attacker could exploit this to crash the system or possibly gain root privileges. (CVE-2011-1013) Marek Olsak discovered that the Radeon GPU drivers did not correctly validate certain registers. On systems with specific hardware, a local attacker could exploit this to write to arbitrary video memory. (CVE-2011-1016) Timo Warns discovered that the LDM disk partition handling code did not correctly handle certain values. By inserting a specially crafted disk device, a local attacker could exploit this to gain root privileges. (CVE-2011-1017) Vasiliy Kulikov discovered that the CAP_SYS_MODULE capability was not needed to load kernel modules. A local attacker with the CAP_NET_ADMIN capability could load existing kernel modules, possibly increasing the attack surface available on the system. (CVE-2011-1019) It was discovered that the /proc filesystem did not correctly handle permission changes when programs executed. A local attacker could hold open files to examine details about programs running with higher privileges, potentially increasing the chances of exploiting additional vulnerabilities. (CVE-2011-1020) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly clear memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1078) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly check that device name strings were NULL terminated. A local attacker could exploit this to crash the system, leading to a denial of service, or leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1079) Vasiliy Kulikov discovered that bridge network filtering did not check that name fields were NULL terminated. A local attacker could exploit this to leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1080) Nelson Elhage discovered that the epoll subsystem did not correctly handle certain structures. A local attacker could create malicious requests that would hang the system, leading to a denial of service. (CVE-2011-1082) Neil Horman discovered that NFSv4 did not correctly handle certain orders of operation with ACL data. A remote attacker with access to an NFSv4 mount could exploit this to crash the system, leading to a denial of service. (CVE-2011-1090) Johan Hovold discovered that the DCCP network stack did not correctly handle certain packet combinations. A remote attacker could send specially crafted network traffic that would crash the system, leading to a denial of service. (CVE-2011-1093) Peter Huewe discovered that the TPM device did not correctly initialize memory. A local attacker could exploit this to read kernel heap memory contents, leading to a loss of privacy. (CVE-2011-1160) Timo Warns discovered that OSF partition parsing routines did not correctly clear memory. A local attacker with physical access could plug in a specially crafted block device to read kernel memory, leading to a loss of privacy. (CVE-2011-1163) Dan Rosenberg discovered that some ALSA drivers did not correctly check the adapter index during ioctl calls. If this driver was loaded, a local attacker could make a specially crafted ioctl call to gain root privileges. (CVE-2011-1169) Vasiliy Kulikov discovered that the netfilter code did not check certain strings copied from userspace. A local attacker with netfilter access could exploit this to read kernel memory or crash the system, leading to a denial of service. (CVE-2011-1170, CVE-2011-1171, CVE-2011-1172, CVE-2011-2534) Vasiliy Kulikov discovered that the Acorn Universal Networking driver did not correctly initialize memory. A remote attacker could send specially crafted traffic to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1173) Dan Rosenberg discovered that the IRDA subsystem did not correctly check certain field sizes. If a system was using IRDA, a remote attacker could send specially crafted traffic to crash the system or gain root privileges. (CVE-2011-1180) Julien Tinnes discovered that the kernel did not correctly validate the signal structure from tkill(). A local attacker could exploit this to send signals to arbitrary threads, possibly bypassing expected restrictions. (CVE-2011-1182) Ryan Sweat discovered that the GRO code did not correctly validate memory. In some configurations on systems using VLANs, a remote attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2011-1478) Dan Rosenberg discovered that the X.25 Rose network stack did not correctly handle certain fields. If a system was running with Rose enabled, a remote attacker could send specially crafted traffic to gain root privileges. (CVE-2011-1493) Dan Rosenberg discovered that MPT devices did not correctly validate certain values in ioctl calls. If these drivers were loaded, a local attacker could exploit this to read arbitrary kernel memory, leading to a loss of privacy. (CVE-2011-1494, CVE-2011-1495) Timo Warns discovered that the GUID partition parsing routines did not correctly validate certain structures. A local attacker with physical access could plug in a specially crafted block device to crash the system, leading to a denial of service. (CVE-2011-1577) Tavis Ormandy discovered that the pidmap function did not correctly handle large requests. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-1593) Oliver Hartkopp and Dave Jones discovered that the CAN network driver did not correctly validate certain socket structures. If this driver was loaded, a local attacker could crash the system, leading to a denial of service. (CVE-2011-1598, CVE-2011-1748) Vasiliy Kulikov discovered that the AGP driver did not check certain ioctl values. A local attacker with access to the video subsystem could exploit this to crash the system, leading to a denial of service, or possibly gain root privileges. (CVE-2011-1745, CVE-2011-2022) Vasiliy Kulikov discovered that the AGP driver did not check the size of certain memory allocations. A local attacker with access to the video subsystem could exploit this to run the system out of memory, leading to a denial of service. (CVE-2011-1746) Dan Rosenberg discovered that the DCCP stack did not correctly handle certain packet structures. A remote attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-1770) Vasiliy Kulikov and Dan Rosenberg discovered that ecryptfs did not correctly check the origin of mount points. A local attacker could exploit this to trick the system into unmounting arbitrary mount points, leading to a denial of service. (CVE-2011-1833) Vasiliy Kulikov discovered that taskstats listeners were not correctly handled. A local attacker could expoit this to exhaust memory and CPU resources, leading to a denial of service. (CVE-2011-2484) It was discovered that Bluetooth l2cap and rfcomm did not correctly initialize structures. A local attacker could exploit this to read portions of the kernel stack, leading to a loss of privacy. (CVE-2011-2492) Fernando Gont discovered that the IPv6 stack used predictable fragment identification numbers. A remote attacker could exploit this to exhaust network resources, leading to a denial of service. (CVE-2011-2699) The performance counter subsystem did not correctly handle certain counters. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-2918)
    last seen 2019-02-21
    modified 2016-05-26
    plugin id 56190
    published 2011-09-14
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=56190
    title USN-1202-1 : linux-ti-omap4 vulnerabilities
  • NASL family Scientific Linux Local Security Checks
    NASL id SL_20110510_KERNEL_ON_SL6_X.NASL
    description Security fixes : - An integer overflow flaw in ib_uverbs_poll_cq() could allow a local, unprivileged user to cause a denial of service or escalate their privileges. (CVE-2010-4649, Important) - An integer signedness flaw in drm_modeset_ctl() could allow a local, unprivileged user to cause a denial of service or escalate their privileges. (CVE-2011-1013, Important) - The Radeon GPU drivers in the Linux kernel were missing sanity checks for the Anti Aliasing (AA) resolve register values which could allow a local, unprivileged user to cause a denial of service or escalate their privileges on systems using a graphics card from the ATI Radeon R300, R400, or R500 family of cards. (CVE-2011-1016, Important) - A flaw in dccp_rcv_state_process() could allow a remote attacker to cause a denial of service, even when the socket was already closed. (CVE-2011-1093, Important) - A flaw in the Linux kernel's Stream Control Transmission Protocol (SCTP) implementation could allow a remote attacker to cause a denial of service if the sysctl 'net.sctp.addip_enable' and 'auth_enable' variables were turned on (they are off by default). (CVE-2011-1573, Important) - A memory leak in the inotify_init() system call. In some cases, it could leak a group, which could allow a local, unprivileged user to eventually cause a denial of service. (CVE-2010-4250, Moderate) - A missing validation of a null-terminated string data structure element in bnep_sock_ioctl() could allow a local user to cause an information leak or a denial of service. (CVE-2011-1079, Moderate) - An information leak in bcm_connect() in the Controller Area Network (CAN) Broadcast Manager implementation could allow a local, unprivileged user to leak kernel mode addresses in '/proc/net/can-bcm'. (CVE-2010-4565, Low) - A flaw was found in the Linux kernel's Integrity Measurement Architecture (IMA) implementation. When SELinux was disabled, adding an IMA rule which was supposed to be processed by SELinux would cause ima_match_rules() to always succeed, ignoring any remaining rules. (CVE-2011-0006, Low) - A missing initialization flaw in the XFS file system implementation could lead to an information leak. (CVE-2011-0711, Low) - Buffer overflow flaws in snd_usb_caiaq_audio_init() and snd_usb_caiaq_midi_init() could allow a local, unprivileged user with access to a Native Instruments USB audio device to cause a denial of service or escalate their privileges. (CVE-2011-0712, Low) - The start_code and end_code values in '/proc/[pid]/stat' were not protected. In certain scenarios, this flaw could be used to defeat Address Space Layout Randomization (ASLR). (CVE-2011-0726, Low) - A flaw in dev_load() could allow a local user who has the CAP_NET_ADMIN capability to load arbitrary modules from '/lib/modules/', instead of only netdev modules. (CVE-2011-1019, Low) - A flaw in ib_uverbs_poll_cq() could allow a local, unprivileged user to cause an information leak. (CVE-2011-1044, Low) - A missing validation of a null-terminated string data structure element in do_replace() could allow a local user who has the CAP_NET_ADMIN capability to cause an information leak. (CVE-2011-1080, Low) This update also fixes various bugs. This update also adds an enhancement. - This update provides VLAN null tagging support (VLAN ID 0 can be used in tags). The system must be rebooted for this update to take effect.
    last seen 2019-02-21
    modified 2018-12-31
    plugin id 61035
    published 2012-08-01
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=61035
    title Scientific Linux Security Update : kernel on SL6.x i386/x86_64
  • NASL family Ubuntu Local Security Checks
    NASL id UBUNTU_USN-1162-1.NASL
    description Brad Spengler discovered that the kernel did not correctly account for userspace memory allocations during exec() calls. A local attacker could exploit this to consume all system memory, leading to a denial of service. (CVE-2010-4243) Alexander Duyck discovered that the Intel Gigabit Ethernet driver did not correctly handle certain configurations. If such a device was configured without VLANs, a remote attacker could crash the system, leading to a denial of service. (CVE-2010-4263) Nelson Elhage discovered that Econet did not correctly handle AUN packets over UDP. A local attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2010-4342) Dan Rosenberg discovered that IRDA did not correctly check the size of buffers. On non-x86 systems, a local attacker could exploit this to read kernel heap memory, leading to a loss of privacy. (CVE-2010-4529) Dan Rosenburg discovered that the CAN subsystem leaked kernel addresses into the /proc filesystem. A local attacker could use this to increase the chances of a successful memory corruption exploit. (CVE-2010-4565) Goldwyn Rodrigues discovered that the OCFS2 filesystem did not correctly clear memory when writing certain file holes. A local attacker could exploit this to read uninitialized data from the disk, leading to a loss of privacy. (CVE-2011-0463) Jens Kuehnel discovered that the InfiniBand driver contained a race condition. On systems using InfiniBand, a local attacker could send specially crafted requests to crash the system, leading to a denial of service. (CVE-2011-0695) Dan Rosenberg discovered that XFS did not correctly initialize memory. A local attacker could make crafted ioctl calls to leak portions of kernel stack memory, leading to a loss of privacy. (CVE-2011-0711) Kees Cook reported that /proc/pid/stat did not correctly filter certain memory locations. A local attacker could determine the memory layout of processes in an attempt to increase the chances of a successful memory corruption exploit. (CVE-2011-0726) Matthiew Herrb discovered that the drm modeset interface did not correctly handle a signed comparison. A local attacker could exploit this to crash the system or possibly gain root privileges. (CVE-2011-1013) Marek Olsak discovered that the Radeon GPU drivers did not correctly validate certain registers. On systems with specific hardware, a local attacker could exploit this to write to arbitrary video memory. (CVE-2011-1016) Timo Warns discovered that the LDM disk partition handling code did not correctly handle certain values. By inserting a specially crafted disk device, a local attacker could exploit this to gain root privileges. (CVE-2011-1017) Vasiliy Kulikov discovered that the CAP_SYS_MODULE capability was not needed to load kernel modules. A local attacker with the CAP_NET_ADMIN capability could load existing kernel modules, possibly increasing the attack surface available on the system. (CVE-2011-1019) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly clear memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1078) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly check that device name strings were NULL terminated. A local attacker could exploit this to crash the system, leading to a denial of service, or leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1079) Vasiliy Kulikov discovered that bridge network filtering did not check that name fields were NULL terminated. A local attacker could exploit this to leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1080) Neil Horman discovered that NFSv4 did not correctly handle certain orders of operation with ACL data. A remote attacker with access to an NFSv4 mount could exploit this to crash the system, leading to a denial of service. (CVE-2011-1090) Peter Huewe discovered that the TPM device did not correctly initialize memory. A local attacker could exploit this to read kernel heap memory contents, leading to a loss of privacy. (CVE-2011-1160) Timo Warns discovered that OSF partition parsing routines did not correctly clear memory. A local attacker with physical access could plug in a specially crafted block device to read kernel memory, leading to a loss of privacy. (CVE-2011-1163) Vasiliy Kulikov discovered that the netfilter code did not check certain strings copied from userspace. A local attacker with netfilter access could exploit this to read kernel memory or crash the system, leading to a denial of service. (CVE-2011-1170, CVE-2011-1171, CVE-2011-1172, CVE-2011-2534) Vasiliy Kulikov discovered that the Acorn Universal Networking driver did not correctly initialize memory. A remote attacker could send specially crafted traffic to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1173) Dan Rosenberg discovered that the IRDA subsystem did not correctly check certain field sizes. If a system was using IRDA, a remote attacker could send specially crafted traffic to crash the system or gain root privileges. (CVE-2011-1180) Julien Tinnes discovered that the kernel did not correctly validate the signal structure from tkill(). A local attacker could exploit this to send signals to arbitrary threads, possibly bypassing expected restrictions. (CVE-2011-1182) Dan Rosenberg reported errors in the OSS (Open Sound System) MIDI interface. A local attacker on non-x86 systems might be able to cause a denial of service. (CVE-2011-1476) Dan Rosenberg reported errors in the kernel's OSS (Open Sound System) driver for Yamaha FM synthesizer chips. A local user can exploit this to cause memory corruption, causing a denial of service or privilege escalation. (CVE-2011-1477) Ryan Sweat discovered that the GRO code did not correctly validate memory. In some configurations on systems using VLANs, a remote attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2011-1478) Dan Rosenberg discovered that MPT devices did not correctly validate certain values in ioctl calls. If these drivers were loaded, a local attacker could exploit this to read arbitrary kernel memory, leading to a loss of privacy. (CVE-2011-1494, CVE-2011-1495) It was discovered that the Stream Control Transmission Protocol (SCTP) implementation incorrectly calculated lengths. If the net.sctp.addip_enable variable was turned on, a remote attacker could send specially crafted traffic to crash the system. (CVE-2011-1573) Tavis Ormandy discovered that the pidmap function did not correctly handle large requests. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-1593) Oliver Hartkopp and Dave Jones discovered that the CAN network driver did not correctly validate certain socket structures. If this driver was loaded, a local attacker could crash the system, leading to a denial of service. (CVE-2011-1598, CVE-2011-1748) Vasiliy Kulikov discovered that the AGP driver did not check certain ioctl values. A local attacker with access to the video subsystem could exploit this to crash the system, leading to a denial of service, or possibly gain root privileges. (CVE-2011-1745, CVE-2011-2022) Vasiliy Kulikov discovered that the AGP driver did not check the size of certain memory allocations. A local attacker with access to the video subsystem could exploit this to run the system out of memory, leading to a denial of service. (CVE-2011-1746) Dan Rosenberg reported an error in the old ABI compatibility layer of ARM kernels. A local attacker could exploit this flaw to cause a denial of service or gain root privileges. (CVE-2011-1759) Dan Rosenberg discovered that the DCCP stack did not correctly handle certain packet structures. A remote attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-1770) Timo Warns discovered that the EFI GUID partition table was not correctly parsed. A physically local attacker that could insert mountable devices could exploit this to crash the system or possibly gain root privileges. (CVE-2011-1776) A flaw was found in the b43 driver in the Linux kernel. An attacker could use this flaw to cause a denial of service if the system has an active wireless interface using the b43 driver. (CVE-2011-3359) Yogesh Sharma discovered that CIFS did not correctly handle UNCs that had no prefixpaths. A local attacker with access to a CIFS partition could exploit this to crash the system, leading to a denial of service. (CVE-2011-3363) Maynard Johnson discovered that on POWER7, certain speculative events may raise a performance monitor exception. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-4611) Dan Rosenberg discovered flaws in the linux Rose (X.25 PLP) layer used by amateur radio. A local user or a remote user on an X.25 network could exploit these flaws to execute arbitrary code as root. (CVE-2011-4913).
    last seen 2019-02-21
    modified 2019-01-02
    plugin id 55521
    published 2011-07-06
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=55521
    title Ubuntu 10.04 LTS : linux-mvl-dove vulnerabilities (USN-1162-1)
  • NASL family Ubuntu Local Security Checks
    NASL id UBUNTU_USN-1167-1.NASL
    description Aristide Fattori and Roberto Paleari reported a flaw in the Linux kernel's handling of IPv4 icmp packets. A remote user could exploit this to cause a denial of service. (CVE-2011-1927) Goldwyn Rodrigues discovered that the OCFS2 filesystem did not correctly clear memory when writing certain file holes. A local attacker could exploit this to read uninitialized data from the disk, leading to a loss of privacy. (CVE-2011-0463) Timo Warns discovered that the LDM disk partition handling code did not correctly handle certain values. By inserting a specially crafted disk device, a local attacker could exploit this to gain root privileges. (CVE-2011-1017) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly clear memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1078) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly check that device name strings were NULL terminated. A local attacker could exploit this to crash the system, leading to a denial of service, or leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1079) Vasiliy Kulikov discovered that bridge network filtering did not check that name fields were NULL terminated. A local attacker could exploit this to leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1080) Johan Hovold discovered that the DCCP network stack did not correctly handle certain packet combinations. A remote attacker could send specially crafted network traffic that would crash the system, leading to a denial of service. (CVE-2011-1093) Peter Huewe discovered that the TPM device did not correctly initialize memory. A local attacker could exploit this to read kernel heap memory contents, leading to a loss of privacy. (CVE-2011-1160) Vasiliy Kulikov discovered that the netfilter code did not check certain strings copied from userspace. A local attacker with netfilter access could exploit this to read kernel memory or crash the system, leading to a denial of service. (CVE-2011-1170, CVE-2011-1171, CVE-2011-1172, CVE-2011-2534) Vasiliy Kulikov discovered that the Acorn Universal Networking driver did not correctly initialize memory. A remote attacker could send specially crafted traffic to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1173) Dan Rosenberg discovered that the IRDA subsystem did not correctly check certain field sizes. If a system was using IRDA, a remote attacker could send specially crafted traffic to crash the system or gain root privileges. (CVE-2011-1180) Dan Rosenberg reported errors in the OSS (Open Sound System) MIDI interface. A local attacker on non-x86 systems might be able to cause a denial of service. (CVE-2011-1476) Dan Rosenberg reported errors in the kernel's OSS (Open Sound System) driver for Yamaha FM synthesizer chips. A local user can exploit this to cause memory corruption, causing a denial of service or privilege escalation. (CVE-2011-1477) It was discovered that the security fix for CVE-2010-4250 introduced a regression. A remote attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-1479) Dan Rosenberg discovered that MPT devices did not correctly validate certain values in ioctl calls. If these drivers were loaded, a local attacker could exploit this to read arbitrary kernel memory, leading to a loss of privacy. (CVE-2011-1494, CVE-2011-1495) Tavis Ormandy discovered that the pidmap function did not correctly handle large requests. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-1593) Oliver Hartkopp and Dave Jones discovered that the CAN network driver did not correctly validate certain socket structures. If this driver was loaded, a local attacker could crash the system, leading to a denial of service. (CVE-2011-1598, CVE-2011-1748) Vasiliy Kulikov discovered that the AGP driver did not check certain ioctl values. A local attacker with access to the video subsystem could exploit this to crash the system, leading to a denial of service, or possibly gain root privileges. (CVE-2011-1745, CVE-2011-2022) Vasiliy Kulikov discovered that the AGP driver did not check the size of certain memory allocations. A local attacker with access to the video subsystem could exploit this to run the system out of memory, leading to a denial of service. (CVE-2011-1746) Dan Rosenberg reported an error in the old ABI compatibility layer of ARM kernels. A local attacker could exploit this flaw to cause a denial of service or gain root privileges. (CVE-2011-1759) Dan Rosenberg discovered that the DCCP stack did not correctly handle certain packet structures. A remote attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-1770) Ben Greear discovered that CIFS did not correctly handle direct I/O. A local attacker with access to a CIFS partition could exploit this to crash the system, leading to a denial of service. (CVE-2011-1771) Timo Warns discovered that the EFI GUID partition table was not correctly parsed. A physically local attacker that could insert mountable devices could exploit this to crash the system or possibly gain root privileges. (CVE-2011-1776) It was discovered that an mmap() call with the MAP_PRIVATE flag on '/dev/zero' was incorrectly handled. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-2479) Robert Swiecki discovered that mapping extensions were incorrectly handled. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-2496) The linux kernel did not properly account for PTE pages when deciding which task to kill in out of memory conditions. A local, unprivileged could exploit this flaw to cause a denial of service. (CVE-2011-2498) A flaw was found in the b43 driver in the Linux kernel. An attacker could use this flaw to cause a denial of service if the system has an active wireless interface using the b43 driver. (CVE-2011-3359) Yogesh Sharma discovered that CIFS did not correctly handle UNCs that had no prefixpaths. A local attacker with access to a CIFS partition could exploit this to crash the system, leading to a denial of service. (CVE-2011-3363) Dan Rosenberg discovered flaws in the linux Rose (X.25 PLP) layer used by amateur radio. A local user or a remote user on an X.25 network could exploit these flaws to execute arbitrary code as root. (CVE-2011-4913). Note that Tenable Network Security has extracted the preceding description block directly from the Ubuntu security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen 2019-02-21
    modified 2018-12-01
    plugin id 55591
    published 2011-07-14
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=55591
    title Ubuntu 11.04 : linux vulnerabilities (USN-1167-1)
  • NASL family Ubuntu Local Security Checks
    NASL id UBUNTU_USN-1159-1.NASL
    description Brad Spengler discovered that the kernel did not correctly account for userspace memory allocations during exec() calls. A local attacker could exploit this to consume all system memory, leading to a denial of service. (CVE-2010-4243) Alexander Duyck discovered that the Intel Gigabit Ethernet driver did not correctly handle certain configurations. If such a device was configured without VLANs, a remote attacker could crash the system, leading to a denial of service. (CVE-2010-4263) Nelson Elhage discovered that Econet did not correctly handle AUN packets over UDP. A local attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2010-4342) Dan Rosenberg discovered that IRDA did not correctly check the size of buffers. On non-x86 systems, a local attacker could exploit this to read kernel heap memory, leading to a loss of privacy. (CVE-2010-4529) Dan Rosenburg discovered that the CAN subsystem leaked kernel addresses into the /proc filesystem. A local attacker could use this to increase the chances of a successful memory corruption exploit. (CVE-2010-4565) Goldwyn Rodrigues discovered that the OCFS2 filesystem did not correctly clear memory when writing certain file holes. A local attacker could exploit this to read uninitialized data from the disk, leading to a loss of privacy. (CVE-2011-0463) Jens Kuehnel discovered that the InfiniBand driver contained a race condition. On systems using InfiniBand, a local attacker could send specially crafted requests to crash the system, leading to a denial of service. (CVE-2011-0695) Dan Rosenberg discovered that XFS did not correctly initialize memory. A local attacker could make crafted ioctl calls to leak portions of kernel stack memory, leading to a loss of privacy. (CVE-2011-0711) Kees Cook reported that /proc/pid/stat did not correctly filter certain memory locations. A local attacker could determine the memory layout of processes in an attempt to increase the chances of a successful memory corruption exploit. (CVE-2011-0726) Matthiew Herrb discovered that the drm modeset interface did not correctly handle a signed comparison. A local attacker could exploit this to crash the system or possibly gain root privileges. (CVE-2011-1013) Marek Olsak discovered that the Radeon GPU drivers did not correctly validate certain registers. On systems with specific hardware, a local attacker could exploit this to write to arbitrary video memory. (CVE-2011-1016) Timo Warns discovered that the LDM disk partition handling code did not correctly handle certain values. By inserting a specially crafted disk device, a local attacker could exploit this to gain root privileges. (CVE-2011-1017) Vasiliy Kulikov discovered that the CAP_SYS_MODULE capability was not needed to load kernel modules. A local attacker with the CAP_NET_ADMIN capability could load existing kernel modules, possibly increasing the attack surface available on the system. (CVE-2011-1019) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly clear memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1078) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly check that device name strings were NULL terminated. A local attacker could exploit this to crash the system, leading to a denial of service, or leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1079) Vasiliy Kulikov discovered that bridge network filtering did not check that name fields were NULL terminated. A local attacker could exploit this to leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1080) Neil Horman discovered that NFSv4 did not correctly handle certain orders of operation with ACL data. A remote attacker with access to an NFSv4 mount could exploit this to crash the system, leading to a denial of service. (CVE-2011-1090) Peter Huewe discovered that the TPM device did not correctly initialize memory. A local attacker could exploit this to read kernel heap memory contents, leading to a loss of privacy. (CVE-2011-1160) Timo Warns discovered that OSF partition parsing routines did not correctly clear memory. A local attacker with physical access could plug in a specially crafted block device to read kernel memory, leading to a loss of privacy. (CVE-2011-1163) Vasiliy Kulikov discovered that the netfilter code did not check certain strings copied from userspace. A local attacker with netfilter access could exploit this to read kernel memory or crash the system, leading to a denial of service. (CVE-2011-1170, CVE-2011-1171, CVE-2011-1172, CVE-2011-2534) Vasiliy Kulikov discovered that the Acorn Universal Networking driver did not correctly initialize memory. A remote attacker could send specially crafted traffic to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1173) Dan Rosenberg discovered that the IRDA subsystem did not correctly check certain field sizes. If a system was using IRDA, a remote attacker could send specially crafted traffic to crash the system or gain root privileges. (CVE-2011-1180) Julien Tinnes discovered that the kernel did not correctly validate the signal structure from tkill(). A local attacker could exploit this to send signals to arbitrary threads, possibly bypassing expected restrictions. (CVE-2011-1182) Dan Rosenberg reported errors in the OSS (Open Sound System) MIDI interface. A local attacker on non-x86 systems might be able to cause a denial of service. (CVE-2011-1476) Dan Rosenberg reported errors in the kernel's OSS (Open Sound System) driver for Yamaha FM synthesizer chips. A local user can exploit this to cause memory corruption, causing a denial of service or privilege escalation. (CVE-2011-1477) Ryan Sweat discovered that the GRO code did not correctly validate memory. In some configurations on systems using VLANs, a remote attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2011-1478) Dan Rosenberg discovered that MPT devices did not correctly validate certain values in ioctl calls. If these drivers were loaded, a local attacker could exploit this to read arbitrary kernel memory, leading to a loss of privacy. (CVE-2011-1494, CVE-2011-1495) It was discovered that the Stream Control Transmission Protocol (SCTP) implementation incorrectly calculated lengths. If the net.sctp.addip_enable variable was turned on, a remote attacker could send specially crafted traffic to crash the system. (CVE-2011-1573) Tavis Ormandy discovered that the pidmap function did not correctly handle large requests. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-1593) Oliver Hartkopp and Dave Jones discovered that the CAN network driver did not correctly validate certain socket structures. If this driver was loaded, a local attacker could crash the system, leading to a denial of service. (CVE-2011-1598, CVE-2011-1748) Vasiliy Kulikov discovered that the AGP driver did not check certain ioctl values. A local attacker with access to the video subsystem could exploit this to crash the system, leading to a denial of service, or possibly gain root privileges. (CVE-2011-1745, CVE-2011-2022) Vasiliy Kulikov discovered that the AGP driver did not check the size of certain memory allocations. A local attacker with access to the video subsystem could exploit this to run the system out of memory, leading to a denial of service. (CVE-2011-1746) Dan Rosenberg reported an error in the old ABI compatibility layer of ARM kernels. A local attacker could exploit this flaw to cause a denial of service or gain root privileges. (CVE-2011-1759) Dan Rosenberg discovered that the DCCP stack did not correctly handle certain packet structures. A remote attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-1770) Timo Warns discovered that the EFI GUID partition table was not correctly parsed. A physically local attacker that could insert mountable devices could exploit this to crash the system or possibly gain root privileges. (CVE-2011-1776) A flaw was found in the b43 driver in the Linux kernel. An attacker could use this flaw to cause a denial of service if the system has an active wireless interface using the b43 driver. (CVE-2011-3359) Yogesh Sharma discovered that CIFS did not correctly handle UNCs that had no prefixpaths. A local attacker with access to a CIFS partition could exploit this to crash the system, leading to a denial of service. (CVE-2011-3363) Maynard Johnson discovered that on POWER7, certain speculative events may raise a performance monitor exception. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-4611) Dan Rosenberg discovered flaws in the linux Rose (X.25 PLP) layer used by amateur radio. A local user or a remote user on an X.25 network could exploit these flaws to execute arbitrary code as root. (CVE-2011-4913).
    last seen 2019-02-21
    modified 2016-05-26
    plugin id 55589
    published 2011-07-14
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=55589
    title Ubuntu 10.10 : linux-mvl-dove vulnerabilities (USN-1159-1)
  • NASL family Ubuntu Local Security Checks
    NASL id UBUNTU_USN-1141-1.NASL
    description Brad Spengler discovered that the kernel did not correctly account for userspace memory allocations during exec() calls. A local attacker could exploit this to consume all system memory, leading to a denial of service. (CVE-2010-4243) Alexander Duyck discovered that the Intel Gigabit Ethernet driver did not correctly handle certain configurations. If such a device was configured without VLANs, a remote attacker could crash the system, leading to a denial of service. (CVE-2010-4263) Nelson Elhage discovered that Econet did not correctly handle AUN packets over UDP. A local attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2010-4342) Dan Rosenberg discovered that IRDA did not correctly check the size of buffers. On non-x86 systems, a local attacker could exploit this to read kernel heap memory, leading to a loss of privacy. (CVE-2010-4529) Dan Rosenburg discovered that the CAN subsystem leaked kernel addresses into the /proc filesystem. A local attacker could use this to increase the chances of a successful memory corruption exploit. (CVE-2010-4565) Kees Cook discovered that the IOWarrior USB device driver did not correctly check certain size fields. A local attacker with physical access could plug in a specially crafted USB device to crash the system or potentially gain root privileges. (CVE-2010-4656) Goldwyn Rodrigues discovered that the OCFS2 filesystem did not correctly clear memory when writing certain file holes. A local attacker could exploit this to read uninitialized data from the disk, leading to a loss of privacy. (CVE-2011-0463) Dan Carpenter discovered that the TTPCI DVB driver did not check certain values during an ioctl. If the dvb-ttpci module was loaded, a local attacker could exploit this to crash the system, leading to a denial of service, or possibly gain root privileges. (CVE-2011-0521) Jens Kuehnel discovered that the InfiniBand driver contained a race condition. On systems using InfiniBand, a local attacker could send specially crafted requests to crash the system, leading to a denial of service. (CVE-2011-0695) Dan Rosenberg discovered that XFS did not correctly initialize memory. A local attacker could make crafted ioctl calls to leak portions of kernel stack memory, leading to a loss of privacy. (CVE-2011-0711) Rafael Dominguez Vega discovered that the caiaq Native Instruments USB driver did not correctly validate string lengths. A local attacker with physical access could plug in a specially crafted USB device to crash the system or potentially gain root privileges. (CVE-2011-0712) Kees Cook reported that /proc/pid/stat did not correctly filter certain memory locations. A local attacker could determine the memory layout of processes in an attempt to increase the chances of a successful memory corruption exploit. (CVE-2011-0726) Timo Warns discovered that MAC partition parsing routines did not correctly calculate block counts. A local attacker with physical access could plug in a specially crafted block device to crash the system or potentially gain root privileges. (CVE-2011-1010) Timo Warns discovered that LDM partition parsing routines did not correctly calculate block counts. A local attacker with physical access could plug in a specially crafted block device to crash the system, leading to a denial of service. (CVE-2011-1012) Matthiew Herrb discovered that the drm modeset interface did not correctly handle a signed comparison. A local attacker could exploit this to crash the system or possibly gain root privileges. (CVE-2011-1013) Marek Olsak discovered that the Radeon GPU drivers did not correctly validate certain registers. On systems with specific hardware, a local attacker could exploit this to write to arbitrary video memory. (CVE-2011-1016) Vasiliy Kulikov discovered that the CAP_SYS_MODULE capability was not needed to load kernel modules. A local attacker with the CAP_NET_ADMIN capability could load existing kernel modules, possibly increasing the attack surface available on the system. (CVE-2011-1019) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly clear memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1078) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly check that device name strings were NULL terminated. A local attacker could exploit this to crash the system, leading to a denial of service, or leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1079) Vasiliy Kulikov discovered that bridge network filtering did not check that name fields were NULL terminated. A local attacker could exploit this to leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1080) Nelson Elhage discovered that the epoll subsystem did not correctly handle certain structures. A local attacker could create malicious requests that would hang the system, leading to a denial of service. (CVE-2011-1082) Johan Hovold discovered that the DCCP network stack did not correctly handle certain packet combinations. A remote attacker could send specially crafted network traffic that would crash the system, leading to a denial of service. (CVE-2011-1093) Peter Huewe discovered that the TPM device did not correctly initialize memory. A local attacker could exploit this to read kernel heap memory contents, leading to a loss of privacy. (CVE-2011-1160) Vasiliy Kulikov discovered that the netfilter code did not check certain strings copied from userspace. A local attacker with netfilter access could exploit this to read kernel memory or crash the system, leading to a denial of service. (CVE-2011-1170, CVE-2011-1171, CVE-2011-1172, CVE-2011-2534) Vasiliy Kulikov discovered that the Acorn Universal Networking driver did not correctly initialize memory. A remote attacker could send specially crafted traffic to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1173) Dan Rosenberg discovered that the IRDA subsystem did not correctly check certain field sizes. If a system was using IRDA, a remote attacker could send specially crafted traffic to crash the system or gain root privileges. (CVE-2011-1180) Julien Tinnes discovered that the kernel did not correctly validate the signal structure from tkill(). A local attacker could exploit this to send signals to arbitrary threads, possibly bypassing expected restrictions. (CVE-2011-1182) Dan Rosenberg reported errors in the OSS (Open Sound System) MIDI interface. A local attacker on non-x86 systems might be able to cause a denial of service. (CVE-2011-1476) Dan Rosenberg reported errors in the kernel's OSS (Open Sound System) driver for Yamaha FM synthesizer chips. A local user can exploit this to cause memory corruption, causing a denial of service or privilege escalation. (CVE-2011-1477) Ryan Sweat discovered that the GRO code did not correctly validate memory. In some configurations on systems using VLANs, a remote attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2011-1478) It was discovered that the Stream Control Transmission Protocol (SCTP) implementation incorrectly calculated lengths. If the net.sctp.addip_enable variable was turned on, a remote attacker could send specially crafted traffic to crash the system. (CVE-2011-1573) A flaw was found in the b43 driver in the Linux kernel. An attacker could use this flaw to cause a denial of service if the system has an active wireless interface using the b43 driver. (CVE-2011-3359) Maynard Johnson discovered that on POWER7, certain speculative events may raise a performance monitor exception. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-4611) Dan Rosenberg discovered flaws in the linux Rose (X.25 PLP) layer used by amateur radio. A local user or a remote user on an X.25 network could exploit these flaws to execute arbitrary code as root. (CVE-2011-4913). Note that Tenable Network Security has extracted the preceding description block directly from the Ubuntu security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen 2019-02-21
    modified 2019-01-02
    plugin id 55104
    published 2011-06-13
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=55104
    title Ubuntu 10.04 LTS : linux, linux-ec2 vulnerabilities (USN-1141-1)
  • NASL family Oracle Linux Local Security Checks
    NASL id ORACLELINUX_ELSA-2011-2015.NASL
    description Description of changes: [2.6.32-100.28.15.el6] - sctp: fix to calc the INIT/INIT-ACK chunk length correctly is set {CVE-2011-1573} - dccp: fix oops on Reset after close {CVE-2011-1093} - bridge: netfilter: fix information leak {CVE-2011-1080} - Bluetooth: bnep: fix buffer overflow {CVE-2011-1079} - net: don't allow CAP_NET_ADMIN to load non-netdev kernel modules {CVE-2011-1019} - ipip: add module alias for tunl0 tunnel device - gre: add module alias for gre0 tunnel device - drm/radeon/kms: check AA resolve registers on r300 {CVE-2011-1016} - drm/radeon: fix regression with AA resolve checking {CVE-2011-1016} - drm: fix unsigned vs signed comparison issue in modeset ctl ioctl {CVE-2011-1013} - proc: protect mm start_code/end_code in /proc/pid/stat {CVE-2011-0726} - ALSA: caiaq - Fix possible string-buffer overflow {CVE-2011-0712} - xfs: zero proper structure size for geometry calls {CVE-2011-0711} - xfs: prevent leaking uninitialized stack memory in FSGEOMETRY_V1 {CVE-2011-0711} - ima: fix add LSM rule bug {CVE-2011-0006} - IB/uverbs: Handle large number of entries in poll CQ {CVE-2010-4649, CVE-2011-1044} - CAN: Use inode instead of kernel address for /proc file {CVE-2010-4565} [2.6.32-100.28.14.el6] - IB/qib: fix qib compile warning. - IB/core: Allow device-specific per-port sysfs files. - dm crypt: add plain64 iv. - firmware: add firmware for qib. - Infiniband: Add QLogic PCIe QLE InfiniBand host channel adapters support.
    last seen 2019-02-21
    modified 2015-12-01
    plugin id 68416
    published 2013-07-12
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=68416
    title Oracle Linux 5 / 6 : Unbreakable Enterprise kernel (ELSA-2011-2015)
  • NASL family Red Hat Local Security Checks
    NASL id REDHAT-RHSA-2011-0498.NASL
    description Updated kernel packages that fix several security issues, various bugs, and add an enhancement are now available for Red Hat Enterprise Linux 6. The Red Hat Security Response Team has rated this update as having important security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. The kernel packages contain the Linux kernel, the core of any Linux operating system. Security fixes : * An integer overflow flaw in ib_uverbs_poll_cq() could allow a local, unprivileged user to cause a denial of service or escalate their privileges. (CVE-2010-4649, Important) * An integer signedness flaw in drm_modeset_ctl() could allow a local, unprivileged user to cause a denial of service or escalate their privileges. (CVE-2011-1013, Important) * The Radeon GPU drivers in the Linux kernel were missing sanity checks for the Anti Aliasing (AA) resolve register values which could allow a local, unprivileged user to cause a denial of service or escalate their privileges on systems using a graphics card from the ATI Radeon R300, R400, or R500 family of cards. (CVE-2011-1016, Important) * A flaw in dccp_rcv_state_process() could allow a remote attacker to cause a denial of service, even when the socket was already closed. (CVE-2011-1093, Important) * A flaw in the Linux kernel's Stream Control Transmission Protocol (SCTP) implementation could allow a remote attacker to cause a denial of service if the sysctl 'net.sctp.addip_enable' and 'auth_enable' variables were turned on (they are off by default). (CVE-2011-1573, Important) * A memory leak in the inotify_init() system call. In some cases, it could leak a group, which could allow a local, unprivileged user to eventually cause a denial of service. (CVE-2010-4250, Moderate) * A missing validation of a null-terminated string data structure element in bnep_sock_ioctl() could allow a local user to cause an information leak or a denial of service. (CVE-2011-1079, Moderate) * An information leak in bcm_connect() in the Controller Area Network (CAN) Broadcast Manager implementation could allow a local, unprivileged user to leak kernel mode addresses in '/proc/net/can-bcm'. (CVE-2010-4565, Low) * A flaw was found in the Linux kernel's Integrity Measurement Architecture (IMA) implementation. When SELinux was disabled, adding an IMA rule which was supposed to be processed by SELinux would cause ima_match_rules() to always succeed, ignoring any remaining rules. (CVE-2011-0006, Low) * A missing initialization flaw in the XFS file system implementation could lead to an information leak. (CVE-2011-0711, Low) * Buffer overflow flaws in snd_usb_caiaq_audio_init() and snd_usb_caiaq_midi_init() could allow a local, unprivileged user with access to a Native Instruments USB audio device to cause a denial of service or escalate their privileges. (CVE-2011-0712, Low) * The start_code and end_code values in '/proc/[pid]/stat' were not protected. In certain scenarios, this flaw could be used to defeat Address Space Layout Randomization (ASLR). (CVE-2011-0726, Low) * A flaw in dev_load() could allow a local user who has the CAP_NET_ADMIN capability to load arbitrary modules from '/lib/modules/', instead of only netdev modules. (CVE-2011-1019, Low) * A flaw in ib_uverbs_poll_cq() could allow a local, unprivileged user to cause an information leak. (CVE-2011-1044, Low) * A missing validation of a null-terminated string data structure element in do_replace() could allow a local user who has the CAP_NET_ADMIN capability to cause an information leak. (CVE-2011-1080, Low) Red Hat would like to thank Vegard Nossum for reporting CVE-2010-4250; Vasiliy Kulikov for reporting CVE-2011-1079, CVE-2011-1019, and CVE-2011-1080; Dan Rosenberg for reporting CVE-2010-4565 and CVE-2011-0711; Rafael Dominguez Vega for reporting CVE-2011-0712; and Kees Cook for reporting CVE-2011-0726. This update also fixes various bugs and adds an enhancement. Documentation for these changes will be available shortly from the Technical Notes document linked to in the References section. Users should upgrade to these updated packages, which contain backported patches to resolve these issues, and fix the bugs and add the enhancement noted in the Technical Notes. The system must be rebooted for this update to take effect.
    last seen 2019-02-21
    modified 2018-12-20
    plugin id 53867
    published 2011-05-11
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=53867
    title RHEL 6 : kernel (RHSA-2011:0498)
  • NASL family Ubuntu Local Security Checks
    NASL id UBUNTU_USN-1187-1.NASL
    description It was discovered that KVM did not correctly initialize certain CPU registers. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-3698) Thomas Pollet discovered that the RDS network protocol did not check certain iovec buffers. A local attacker could exploit this to crash the system or possibly execute arbitrary code as the root user. (CVE-2010-3865) Vasiliy Kulikov discovered that the Linux kernel X.25 implementation did not correctly clear kernel memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-3875) Vasiliy Kulikov discovered that the Linux kernel sockets implementation did not properly initialize certain structures. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-3876) Vasiliy Kulikov discovered that the TIPC interface did not correctly initialize certain structures. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-3877) Nelson Elhage discovered that the Linux kernel IPv4 implementation did not properly audit certain bytecodes in netlink messages. A local attacker could exploit this to cause the kernel to hang, leading to a denial of service. (CVE-2010-3880) Vasiliy Kulikov discovered that kvm did not correctly clear memory. A local attacker could exploit this to read portions of the kernel stack, leading to a loss of privacy. (CVE-2010-3881) Dan Rosenberg discovered that multiple terminal ioctls did not correctly initialize structure memory. A local attacker could exploit this to read portions of kernel stack memory, leading to a loss of privacy. (CVE-2010-4075, CVE-2010-4076, CVE-2010-4077) Dan Rosenberg discovered that the ivtv V4L driver did not correctly initialize certian structures. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4079) Dan Rosenberg discovered that the semctl syscall did not correctly clear kernel memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4083) Dan Rosenberg discovered that the SCSI subsystem did not correctly validate iov segments. A local attacker with access to a SCSI device could send specially crafted requests to crash the system, leading to a denial of service. (CVE-2010-4163, CVE-2010-4668) It was discovered that multithreaded exec did not handle CPU timers correctly. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4248) Nelson Elhage discovered that Econet did not correctly handle AUN packets over UDP. A local attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2010-4342) Tavis Ormandy discovered that the install_special_mapping function could bypass the mmap_min_addr restriction. A local attacker could exploit this to mmap 4096 bytes below the mmap_min_addr area, possibly improving the chances of performing NULL pointer dereference attacks. (CVE-2010-4346) Dan Rosenberg discovered that the OSS subsystem did not handle name termination correctly. A local attacker could exploit this crash the system or gain root privileges. (CVE-2010-4527) Dan Rosenberg discovered that IRDA did not correctly check the size of buffers. On non-x86 systems, a local attacker could exploit this to read kernel heap memory, leading to a loss of privacy. (CVE-2010-4529) Dan Rosenburg discovered that the CAN subsystem leaked kernel addresses into the /proc filesystem. A local attacker could use this to increase the chances of a successful memory corruption exploit. (CVE-2010-4565) Dan Carpenter discovered that the Infiniband driver did not correctly handle certain requests. A local user could exploit this to crash the system or potentially gain root privileges. (CVE-2010-4649, CVE-2011-1044) Kees Cook discovered that the IOWarrior USB device driver did not correctly check certain size fields. A local attacker with physical access could plug in a specially crafted USB device to crash the system or potentially gain root privileges. (CVE-2010-4656) Goldwyn Rodrigues discovered that the OCFS2 filesystem did not correctly clear memory when writing certain file holes. A local attacker could exploit this to read uninitialized data from the disk, leading to a loss of privacy. (CVE-2011-0463) Dan Carpenter discovered that the TTPCI DVB driver did not check certain values during an ioctl. If the dvb-ttpci module was loaded, a local attacker could exploit this to crash the system, leading to a denial of service, or possibly gain root privileges. (CVE-2011-0521) Jens Kuehnel discovered that the InfiniBand driver contained a race condition. On systems using InfiniBand, a local attacker could send specially crafted requests to crash the system, leading to a denial of service. (CVE-2011-0695) Dan Rosenberg discovered that XFS did not correctly initialize memory. A local attacker could make crafted ioctl calls to leak portions of kernel stack memory, leading to a loss of privacy. (CVE-2011-0711) Rafael Dominguez Vega discovered that the caiaq Native Instruments USB driver did not correctly validate string lengths. A local attacker with physical access could plug in a specially crafted USB device to crash the system or potentially gain root privileges. (CVE-2011-0712) Kees Cook reported that /proc/pid/stat did not correctly filter certain memory locations. A local attacker could determine the memory layout of processes in an attempt to increase the chances of a successful memory corruption exploit. (CVE-2011-0726) Timo Warns discovered that MAC partition parsing routines did not correctly calculate block counts. A local attacker with physical access could plug in a specially crafted block device to crash the system or potentially gain root privileges. (CVE-2011-1010) Timo Warns discovered that LDM partition parsing routines did not correctly calculate block counts. A local attacker with physical access could plug in a specially crafted block device to crash the system, leading to a denial of service. (CVE-2011-1012) Matthiew Herrb discovered that the drm modeset interface did not correctly handle a signed comparison. A local attacker could exploit this to crash the system or possibly gain root privileges. (CVE-2011-1013) Marek Olsak discovered that the Radeon GPU drivers did not correctly validate certain registers. On systems with specific hardware, a local attacker could exploit this to write to arbitrary video memory. (CVE-2011-1016) Timo Warns discovered that the LDM disk partition handling code did not correctly handle certain values. By inserting a specially crafted disk device, a local attacker could exploit this to gain root privileges. (CVE-2011-1017) Vasiliy Kulikov discovered that the CAP_SYS_MODULE capability was not needed to load kernel modules. A local attacker with the CAP_NET_ADMIN capability could load existing kernel modules, possibly increasing the attack surface available on the system. (CVE-2011-1019) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly clear memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1078) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly check that device name strings were NULL terminated. A local attacker could exploit this to crash the system, leading to a denial of service, or leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1079) Vasiliy Kulikov discovered that bridge network filtering did not check that name fields were NULL terminated. A local attacker could exploit this to leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1080) Nelson Elhage discovered that the epoll subsystem did not correctly handle certain structures. A local attacker could create malicious requests that would hang the system, leading to a denial of service. (CVE-2011-1082) Neil Horman discovered that NFSv4 did not correctly handle certain orders of operation with ACL data. A remote attacker with access to an NFSv4 mount could exploit this to crash the system, leading to a denial of service. (CVE-2011-1090) Johan Hovold discovered that the DCCP network stack did not correctly handle certain packet combinations. A remote attacker could send specially crafted network traffic that would crash the system, leading to a denial of service. (CVE-2011-1093) Peter Huewe discovered that the TPM device did not correctly initialize memory. A local attacker could exploit this to read kernel heap memory contents, leading to a loss of privacy. (CVE-2011-1160) Timo Warns discovered that OSF partition parsing routines did not correctly clear memory. A local attacker with physical access could plug in a specially crafted block device to read kernel memory, leading to a loss of privacy. (CVE-2011-1163) Dan Rosenberg discovered that some ALSA drivers did not correctly check the adapter index during ioctl calls. If this driver was loaded, a local attacker could make a specially crafted ioctl call to gain root privileges. (CVE-2011-1169) Vasiliy Kulikov discovered that the netfilter code did not check certain strings copied from userspace. A local attacker with netfilter access could exploit this to read kernel memory or crash the system, leading to a denial of service. (CVE-2011-1170, CVE-2011-1171, CVE-2011-1172, CVE-2011-2534) Vasiliy Kulikov discovered that the Acorn Universal Networking driver did not correctly initialize memory. A remote attacker could send specially crafted traffic to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1173) Dan Rosenberg discovered that the IRDA subsystem did not correctly check certain field sizes. If a system was using IRDA, a remote attacker could send specially crafted traffic to crash the system or gain root privileges. (CVE-2011-1180) Julien Tinnes discovered that the kernel did not correctly validate the signal structure from tkill(). A local attacker could exploit this to send signals to arbitrary threads, possibly bypassing expected restrictions. (CVE-2011-1182) Ryan Sweat discovered that the GRO code did not correctly validate memory. In some configurations on systems using VLANs, a remote attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2011-1478) Dan Rosenberg discovered that MPT devices did not correctly validate certain values in ioctl calls. If these drivers were loaded, a local attacker could exploit this to read arbitrary kernel memory, leading to a loss of privacy. (CVE-2011-1494, CVE-2011-1495) Timo Warns discovered that the GUID partition parsing routines did not correctly validate certain structures. A local attacker with physical access could plug in a specially crafted block device to crash the system, leading to a denial of service. (CVE-2011-1577) Tavis Ormandy discovered that the pidmap function did not correctly handle large requests. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-1593) Oliver Hartkopp and Dave Jones discovered that the CAN network driver did not correctly validate certain socket structures. If this driver was loaded, a local attacker could crash the system, leading to a denial of service. (CVE-2011-1598, CVE-2011-1748) Vasiliy Kulikov discovered that the AGP driver did not check certain ioctl values. A local attacker with access to the video subsystem could exploit this to crash the system, leading to a denial of service, or possibly gain root privileges. (CVE-2011-1745, CVE-2011-2022) Vasiliy Kulikov discovered that the AGP driver did not check the size of certain memory allocations. A local attacker with access to the video subsystem could exploit this to run the system out of memory, leading to a denial of service. (CVE-2011-1746). Note that Tenable Network Security has extracted the preceding description block directly from the Ubuntu security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen 2019-02-21
    modified 2018-12-01
    plugin id 55785
    published 2011-08-09
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=55785
    title Ubuntu 10.04 LTS : linux-lts-backport-maverick vulnerabilities (USN-1187-1)
  • NASL family Oracle Linux Local Security Checks
    NASL id ORACLELINUX_ELSA-2011-0498.NASL
    description From Red Hat Security Advisory 2011:0498 : Updated kernel packages that fix several security issues, various bugs, and add an enhancement are now available for Red Hat Enterprise Linux 6. The Red Hat Security Response Team has rated this update as having important security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. The kernel packages contain the Linux kernel, the core of any Linux operating system. Security fixes : * An integer overflow flaw in ib_uverbs_poll_cq() could allow a local, unprivileged user to cause a denial of service or escalate their privileges. (CVE-2010-4649, Important) * An integer signedness flaw in drm_modeset_ctl() could allow a local, unprivileged user to cause a denial of service or escalate their privileges. (CVE-2011-1013, Important) * The Radeon GPU drivers in the Linux kernel were missing sanity checks for the Anti Aliasing (AA) resolve register values which could allow a local, unprivileged user to cause a denial of service or escalate their privileges on systems using a graphics card from the ATI Radeon R300, R400, or R500 family of cards. (CVE-2011-1016, Important) * A flaw in dccp_rcv_state_process() could allow a remote attacker to cause a denial of service, even when the socket was already closed. (CVE-2011-1093, Important) * A flaw in the Linux kernel's Stream Control Transmission Protocol (SCTP) implementation could allow a remote attacker to cause a denial of service if the sysctl 'net.sctp.addip_enable' and 'auth_enable' variables were turned on (they are off by default). (CVE-2011-1573, Important) * A memory leak in the inotify_init() system call. In some cases, it could leak a group, which could allow a local, unprivileged user to eventually cause a denial of service. (CVE-2010-4250, Moderate) * A missing validation of a null-terminated string data structure element in bnep_sock_ioctl() could allow a local user to cause an information leak or a denial of service. (CVE-2011-1079, Moderate) * An information leak in bcm_connect() in the Controller Area Network (CAN) Broadcast Manager implementation could allow a local, unprivileged user to leak kernel mode addresses in '/proc/net/can-bcm'. (CVE-2010-4565, Low) * A flaw was found in the Linux kernel's Integrity Measurement Architecture (IMA) implementation. When SELinux was disabled, adding an IMA rule which was supposed to be processed by SELinux would cause ima_match_rules() to always succeed, ignoring any remaining rules. (CVE-2011-0006, Low) * A missing initialization flaw in the XFS file system implementation could lead to an information leak. (CVE-2011-0711, Low) * Buffer overflow flaws in snd_usb_caiaq_audio_init() and snd_usb_caiaq_midi_init() could allow a local, unprivileged user with access to a Native Instruments USB audio device to cause a denial of service or escalate their privileges. (CVE-2011-0712, Low) * The start_code and end_code values in '/proc/[pid]/stat' were not protected. In certain scenarios, this flaw could be used to defeat Address Space Layout Randomization (ASLR). (CVE-2011-0726, Low) * A flaw in dev_load() could allow a local user who has the CAP_NET_ADMIN capability to load arbitrary modules from '/lib/modules/', instead of only netdev modules. (CVE-2011-1019, Low) * A flaw in ib_uverbs_poll_cq() could allow a local, unprivileged user to cause an information leak. (CVE-2011-1044, Low) * A missing validation of a null-terminated string data structure element in do_replace() could allow a local user who has the CAP_NET_ADMIN capability to cause an information leak. (CVE-2011-1080, Low) Red Hat would like to thank Vegard Nossum for reporting CVE-2010-4250; Vasiliy Kulikov for reporting CVE-2011-1079, CVE-2011-1019, and CVE-2011-1080; Dan Rosenberg for reporting CVE-2010-4565 and CVE-2011-0711; Rafael Dominguez Vega for reporting CVE-2011-0712; and Kees Cook for reporting CVE-2011-0726. This update also fixes various bugs and adds an enhancement. Documentation for these changes will be available shortly from the Technical Notes document linked to in the References section. Users should upgrade to these updated packages, which contain backported patches to resolve these issues, and fix the bugs and add the enhancement noted in the Technical Notes. The system must be rebooted for this update to take effect.
    last seen 2019-02-21
    modified 2015-12-01
    plugin id 68273
    published 2013-07-12
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=68273
    title Oracle Linux 6 : kernel (ELSA-2011-0498)
  • NASL family Ubuntu Local Security Checks
    NASL id UBUNTU_USN-1160-1.NASL
    description Dan Rosenberg discovered that IRDA did not correctly check the size of buffers. On non-x86 systems, a local attacker could exploit this to read kernel heap memory, leading to a loss of privacy. (CVE-2010-4529) Dan Rosenburg discovered that the CAN subsystem leaked kernel addresses into the /proc filesystem. A local attacker could use this to increase the chances of a successful memory corruption exploit. (CVE-2010-4565) Kees Cook discovered that the IOWarrior USB device driver did not correctly check certain size fields. A local attacker with physical access could plug in a specially crafted USB device to crash the system or potentially gain root privileges. (CVE-2010-4656) Goldwyn Rodrigues discovered that the OCFS2 filesystem did not correctly clear memory when writing certain file holes. A local attacker could exploit this to read uninitialized data from the disk, leading to a loss of privacy. (CVE-2011-0463) Dan Carpenter discovered that the TTPCI DVB driver did not check certain values during an ioctl. If the dvb-ttpci module was loaded, a local attacker could exploit this to crash the system, leading to a denial of service, or possibly gain root privileges. (CVE-2011-0521) Jens Kuehnel discovered that the InfiniBand driver contained a race condition. On systems using InfiniBand, a local attacker could send specially crafted requests to crash the system, leading to a denial of service. (CVE-2011-0695) Dan Rosenberg discovered that XFS did not correctly initialize memory. A local attacker could make crafted ioctl calls to leak portions of kernel stack memory, leading to a loss of privacy. (CVE-2011-0711) Rafael Dominguez Vega discovered that the caiaq Native Instruments USB driver did not correctly validate string lengths. A local attacker with physical access could plug in a specially crafted USB device to crash the system or potentially gain root privileges. (CVE-2011-0712) Kees Cook reported that /proc/pid/stat did not correctly filter certain memory locations. A local attacker could determine the memory layout of processes in an attempt to increase the chances of a successful memory corruption exploit. (CVE-2011-0726) Timo Warns discovered that MAC partition parsing routines did not correctly calculate block counts. A local attacker with physical access could plug in a specially crafted block device to crash the system or potentially gain root privileges. (CVE-2011-1010) Timo Warns discovered that LDM partition parsing routines did not correctly calculate block counts. A local attacker with physical access could plug in a specially crafted block device to crash the system, leading to a denial of service. (CVE-2011-1012) Matthiew Herrb discovered that the drm modeset interface did not correctly handle a signed comparison. A local attacker could exploit this to crash the system or possibly gain root privileges. (CVE-2011-1013) Marek Olsak discovered that the Radeon GPU drivers did not correctly validate certain registers. On systems with specific hardware, a local attacker could exploit this to write to arbitrary video memory. (CVE-2011-1016) Timo Warns discovered that the LDM disk partition handling code did not correctly handle certain values. By inserting a specially crafted disk device, a local attacker could exploit this to gain root privileges. (CVE-2011-1017) Vasiliy Kulikov discovered that the CAP_SYS_MODULE capability was not needed to load kernel modules. A local attacker with the CAP_NET_ADMIN capability could load existing kernel modules, possibly increasing the attack surface available on the system. (CVE-2011-1019) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly clear memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1078) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly check that device name strings were NULL terminated. A local attacker could exploit this to crash the system, leading to a denial of service, or leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1079) Vasiliy Kulikov discovered that bridge network filtering did not check that name fields were NULL terminated. A local attacker could exploit this to leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1080) Nelson Elhage discovered that the epoll subsystem did not correctly handle certain structures. A local attacker could create malicious requests that would hang the system, leading to a denial of service. (CVE-2011-1082) Johan Hovold discovered that the DCCP network stack did not correctly handle certain packet combinations. A remote attacker could send specially crafted network traffic that would crash the system, leading to a denial of service. (CVE-2011-1093) Peter Huewe discovered that the TPM device did not correctly initialize memory. A local attacker could exploit this to read kernel heap memory contents, leading to a loss of privacy. (CVE-2011-1160) Dan Rosenberg discovered that some ALSA drivers did not correctly check the adapter index during ioctl calls. If this driver was loaded, a local attacker could make a specially crafted ioctl call to gain root privileges. (CVE-2011-1169) Vasiliy Kulikov discovered that the netfilter code did not check certain strings copied from userspace. A local attacker with netfilter access could exploit this to read kernel memory or crash the system, leading to a denial of service. (CVE-2011-1170, CVE-2011-1171, CVE-2011-1172, CVE-2011-2534) Vasiliy Kulikov discovered that the Acorn Universal Networking driver did not correctly initialize memory. A remote attacker could send specially crafted traffic to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1173) Dan Rosenberg discovered that the IRDA subsystem did not correctly check certain field sizes. If a system was using IRDA, a remote attacker could send specially crafted traffic to crash the system or gain root privileges. (CVE-2011-1180) Julien Tinnes discovered that the kernel did not correctly validate the signal structure from tkill(). A local attacker could exploit this to send signals to arbitrary threads, possibly bypassing expected restrictions. (CVE-2011-1182) Dan Rosenberg reported errors in the OSS (Open Sound System) MIDI interface. A local attacker on non-x86 systems might be able to cause a denial of service. (CVE-2011-1476) Dan Rosenberg reported errors in the kernel's OSS (Open Sound System) driver for Yamaha FM synthesizer chips. A local user can exploit this to cause memory corruption, causing a denial of service or privilege escalation. (CVE-2011-1477) Ryan Sweat discovered that the GRO code did not correctly validate memory. In some configurations on systems using VLANs, a remote attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2011-1478) Dan Rosenberg discovered that MPT devices did not correctly validate certain values in ioctl calls. If these drivers were loaded, a local attacker could exploit this to read arbitrary kernel memory, leading to a loss of privacy. (CVE-2011-1494, CVE-2011-1495) Tavis Ormandy discovered that the pidmap function did not correctly handle large requests. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-1593) Vasiliy Kulikov discovered that the AGP driver did not check certain ioctl values. A local attacker with access to the video subsystem could exploit this to crash the system, leading to a denial of service, or possibly gain root privileges. (CVE-2011-1745, CVE-2011-2022) Oliver Hartkopp and Dave Jones discovered that the CAN network driver did not correctly validate certain socket structures. If this driver was loaded, a local attacker could crash the system, leading to a denial of service. (CVE-2011-1748) A flaw was found in the b43 driver in the Linux kernel. An attacker could use this flaw to cause a denial of service if the system has an active wireless interface using the b43 driver. (CVE-2011-3359) Maynard Johnson discovered that on POWER7, certain speculative events may raise a performance monitor exception. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-4611) Dan Rosenberg discovered flaws in the linux Rose (X.25 PLP) layer used by amateur radio. A local user or a remote user on an X.25 network could exploit these flaws to execute arbitrary code as root. (CVE-2011-4913). Note that Tenable Network Security has extracted the preceding description block directly from the Ubuntu security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen 2019-02-21
    modified 2018-12-01
    plugin id 55454
    published 2011-06-29
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=55454
    title Ubuntu 10.10 : linux vulnerabilities (USN-1160-1)
packetstorm via4
data source https://packetstormsecurity.com/files/download/105078/USN-1202-1.txt
id PACKETSTORM:105078
last seen 2016-12-05
published 2011-09-14
reporter Ubuntu
source https://packetstormsecurity.com/files/105078/Ubuntu-Security-Notice-USN-1202-1.html
title Ubuntu Security Notice USN-1202-1
redhat via4
rpms
  • kernel-0:2.6.32-71.29.1.el6
  • kernel-bootwrapper-0:2.6.32-71.29.1.el6
  • kernel-debug-0:2.6.32-71.29.1.el6
  • kernel-debug-devel-0:2.6.32-71.29.1.el6
  • kernel-devel-0:2.6.32-71.29.1.el6
  • kernel-doc-0:2.6.32-71.29.1.el6
  • kernel-firmware-0:2.6.32-71.29.1.el6
  • kernel-headers-0:2.6.32-71.29.1.el6
  • kernel-kdump-0:2.6.32-71.29.1.el6
  • kernel-kdump-devel-0:2.6.32-71.29.1.el6
  • perf-0:2.6.32-71.29.1.el6
refmap via4
confirm
mlist [oss-security] 20110225 Re: CVE request: kernel: CAP_SYS_MODULE bypass via CAP_NET_ADMIN
Last major update 04-03-2013 - 00:00
Published 01-03-2013 - 07:37
Back to Top