ID CVE-2010-3084
Summary Buffer overflow in the niu_get_ethtool_tcam_all function in drivers/net/niu.c in the Linux kernel before 2.6.36-rc4 allows local users to cause a denial of service or possibly have unspecified other impact via the ETHTOOL_GRXCLSRLALL ethtool command.
References
Vulnerable Configurations
  • Linux Kernel 2.6.36
    cpe:2.3:o:linux:linux_kernel:2.6.36
  • Linux Kernel 2.6.36 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.36:rc1
  • Linux Kernel 2.6.36 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.36:rc2
  • Linux Kernel 2.6.36 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.36:rc3
  • Canonical Ubuntu Linux 6.06 LTS (Long-Term Support)
    cpe:2.3:o:canonical:ubuntu_linux:6.06:-:-:-:lts
  • Canonical Ubuntu Linux 8.04 LTS (Long-Term Support)
    cpe:2.3:o:canonical:ubuntu_linux:8.04:-:-:-:lts
  • Canonical Ubuntu Linux 9.04
    cpe:2.3:o:canonical:ubuntu_linux:9.04
  • Canonical Ubuntu Linux 9.10
    cpe:2.3:o:canonical:ubuntu_linux:9.10
  • Canonical Ubuntu Linux 10.04 LTS
    cpe:2.3:o:canonical:ubuntu_linux:10.04:-:-:-:lts
  • Canonical Ubuntu Linux 10.10
    cpe:2.3:o:canonical:ubuntu_linux:10.10
CVSS
Base: 7.2 (as of 30-09-2010 - 11:17)
Impact:
Exploitability:
CWE CWE-119
CAPEC
  • Buffer Overflow via Environment Variables
    This attack pattern involves causing a buffer overflow through manipulation of environment variables. Once the attacker finds that they can modify an environment variable, they may try to overflow associated buffers. This attack leverages implicit trust often placed in environment variables.
  • Overflow Buffers
    Buffer Overflow attacks target improper or missing bounds checking on buffer operations, typically triggered by input injected by an attacker. As a consequence, an attacker is able to write past the boundaries of allocated buffer regions in memory, causing a program crash or potentially redirection of execution as per the attackers' choice.
  • Client-side Injection-induced Buffer Overflow
    This type of attack exploits a buffer overflow vulnerability in targeted client software through injection of malicious content from a custom-built hostile service.
  • Filter Failure through Buffer Overflow
    In this attack, the idea is to cause an active filter to fail by causing an oversized transaction. An attacker may try to feed overly long input strings to the program in an attempt to overwhelm the filter (by causing a buffer overflow) and hoping that the filter does not fail securely (i.e. the user input is let into the system unfiltered).
  • MIME Conversion
    An attacker exploits a weakness in the MIME conversion routine to cause a buffer overflow and gain control over the mail server machine. The MIME system is designed to allow various different information formats to be interpreted and sent via e-mail. Attack points exist when data are converted to MIME compatible format and back.
  • Overflow Binary Resource File
    An attack of this type exploits a buffer overflow vulnerability in the handling of binary resources. Binary resources may include music files like MP3, image files like JPEG files, and any other binary file. These attacks may pass unnoticed to the client machine through normal usage of files, such as a browser loading a seemingly innocent JPEG file. This can allow the attacker access to the execution stack and execute arbitrary code in the target process. This attack pattern is a variant of standard buffer overflow attacks using an unexpected vector (binary files) to wrap its attack and open up a new attack vector. The attacker is required to either directly serve the binary content to the victim, or place it in a locale like a MP3 sharing application, for the victim to download. The attacker then is notified upon the download or otherwise locates the vulnerability opened up by the buffer overflow.
  • Buffer Overflow via Symbolic Links
    This type of attack leverages the use of symbolic links to cause buffer overflows. An attacker can try to create or manipulate a symbolic link file such that its contents result in out of bounds data. When the target software processes the symbolic link file, it could potentially overflow internal buffers with insufficient bounds checking.
  • Overflow Variables and Tags
    This type of attack leverages the use of tags or variables from a formatted configuration data to cause buffer overflow. The attacker crafts a malicious HTML page or configuration file that includes oversized strings, thus causing an overflow.
  • Buffer Overflow via Parameter Expansion
    In this attack, the target software is given input that the attacker knows will be modified and expanded in size during processing. This attack relies on the target software failing to anticipate that the expanded data may exceed some internal limit, thereby creating a buffer overflow.
  • Buffer Overflow in an API Call
    This attack targets libraries or shared code modules which are vulnerable to buffer overflow attacks. An attacker who has access to an API may try to embed malicious code in the API function call and exploit a buffer overflow vulnerability in the function's implementation. All clients that make use of the code library thus become vulnerable by association. This has a very broad effect on security across a system, usually affecting more than one software process.
  • Buffer Overflow in Local Command-Line Utilities
    This attack targets command-line utilities available in a number of shells. An attacker can leverage a vulnerability found in a command-line utility to escalate privilege to root.
Access
VectorComplexityAuthentication
LOCAL LOW NONE
Impact
ConfidentialityIntegrityAvailability
COMPLETE COMPLETE COMPLETE
nessus via4
  • NASL family SuSE Local Security Checks
    NASL id SUSE_11_2_KERNEL-100921.NASL
    description This openSUSE 11.2 kernel was updated to 2.6.31.14, fixing several security issues and bugs. A lot of ext4 filesystem stability fixes were also added. Following security issues have been fixed: CVE-2010-3301: Mismatch between 32bit and 64bit register usage in the system call entry path could be used by local attackers to gain root privileges. This problem only affects x86_64 kernels. CVE-2010-3081: Incorrect buffer handling in the biarch-compat buffer handling could be used by local attackers to gain root privileges. This problem affects foremost x86_64, or potentially other biarch platforms, like PowerPC and S390x. CVE-2010-3084: A buffer overflow in the ETHTOOL_GRXCLSRLALL code could be used to crash the kernel or potentially execute code. CVE-2010-2955: A kernel information leak via the WEXT ioctl was fixed. CVE-2010-2960: The keyctl_session_to_parent function in security/keys/keyctl.c in the Linux kernel expects that a certain parent session keyring exists, which allowed local users to cause a denial of service (NULL pointer dereference and system crash) or possibly have unspecified other impact via a KEYCTL_SESSION_TO_PARENT argument to the keyctl function. CVE-2010-3080: A double free in an alsa error path was fixed, which could lead to kernel crashes. CVE-2010-3079: Fixed a ftrace NULL pointer dereference problem which could lead to kernel crashes. CVE-2010-3298: Fixed a kernel information leak in the net/usb/hso driver. CVE-2010-3296: Fixed a kernel information leak in the cxgb3 driver. CVE-2010-3297: Fixed a kernel information leak in the net/eql driver. CVE-2010-3078: Fixed a kernel information leak in the xfs filesystem. CVE-2010-2942: Fixed a kernel information leak in the net scheduler code. CVE-2010-2954: The irda_bind function in net/irda/af_irda.c in the Linux kernel did not properly handle failure of the irda_open_tsap function, which allowed local users to cause a denial of service (NULL pointer dereference and panic) and possibly have unspecified other impact via multiple unsuccessful calls to bind on an AF_IRDA (aka PF_IRDA) socket. CVE-2010-2226: The xfs_swapext function in fs/xfs/xfs_dfrag.c in the Linux kernel did not properly check the file descriptors passed to the SWAPEXT ioctl, which allowed local users to leverage write access and obtain read access by swapping one file into another file. CVE-2010-2946: The 'os2' xattr namespace on the jfs filesystem could be used to bypass xattr namespace rules. CVE-2010-2959: Integer overflow in net/can/bcm.c in the Controller Area Network (CAN) implementation in the Linux kernel allowed attackers to execute arbitrary code or cause a denial of service (system crash) via crafted CAN traffic. CVE-2010-3015: Integer overflow in the ext4_ext_get_blocks function in fs/ext4/extents.c in the Linux kernel allowed local users to cause a denial of service (BUG and system crash) via a write operation on the last block of a large file, followed by a sync operation. CVE-2010-2492: Buffer overflow in the ecryptfs_uid_hash macro in fs/ecryptfs/messaging.c in the eCryptfs subsystem in the Linux kernel might have allowed local users to gain privileges or cause a denial of service (system crash) via unspecified vectors. CVE-2010-2248: fs/cifs/cifssmb.c in the CIFS implementation in the Linux kernel allowed remote attackers to cause a denial of service (panic) via an SMB response packet with an invalid CountHigh value, as demonstrated by a response from an OS/2 server, related to the CIFSSMBWrite and CIFSSMBWrite2 functions. CVE-2010-2803: The drm_ioctl function in drivers/gpu/drm/drm_drv.c in the Direct Rendering Manager (DRM) subsystem in the Linux kernel allowed local users to obtain potentially sensitive information from kernel memory by requesting a large memory-allocation amount. CVE-2010-2478: A potential buffer overflow in the ETHTOOL_GRXCLSRLALL ethtool code was fixed which could be used by local attackers to crash the kernel or potentially execute code. CVE-2010-2524: The DNS resolution functionality in the CIFS implementation in the Linux kernel, when CONFIG_CIFS_DFS_UPCALL is enabled, relies on a user's keyring for the dns_resolver upcall in the cifs.upcall userspace helper, which allowed local users to spoof the results of DNS queries and perform arbitrary CIFS mounts via vectors involving an add_key call, related to a 'cache stuffing' issue and MS-DFS referrals. CVE-2010-2798: The gfs2_dirent_find_space function in fs/gfs2/dir.c in the Linux kernel used an incorrect size value in calculations associated with sentinel directory entries, which allowed local users to cause a denial of service (NULL pointer dereference and panic) and possibly have unspecified other impact by renaming a file in a GFS2 filesystem, related to the gfs2_rename function in fs/gfs2/ops_inode.c. CVE-2010-2537: The BTRFS_IOC_CLONE and BTRFS_IOC_CLONE_RANGE ioctls allowed a local user to overwrite append-only files. CVE-2010-2538: The BTRFS_IOC_CLONE_RANGE ioctl was subject to an integer overflow in specifying offsets to copy from a file, which potentially allowed a local user to read sensitive filesystem data. CVE-2010-2521: Multiple buffer overflows in fs/nfsd/nfs4xdr.c in the XDR implementation in the NFS server in the Linux kernel allowed remote attackers to cause a denial of service (panic) or possibly execute arbitrary code via a crafted NFSv4 compound WRITE request, related to the read_buf and nfsd4_decode_compound functions. CVE-2010-2066: The mext_check_arguments function in fs/ext4/move_extent.c in the Linux kernel allowed local users to overwrite an append-only file via a MOVE_EXT ioctl call that specifies this file as a donor. CVE-2010-2495: The pppol2tp_xmit function in drivers/net/pppol2tp.c in the L2TP implementation in the Linux kernel did not properly validate certain values associated with an interface, which allowed attackers to cause a denial of service (NULL pointer dereference and OOPS) or possibly have unspecified other impact via vectors related to a routing change. CVE-2010-2071: The btrfs_xattr_set_acl function in fs/btrfs/acl.c in btrfs in the Linux kernel did not check file ownership before setting an ACL, which allowed local users to bypass file permissions by setting arbitrary ACLs, as demonstrated using setfacl. CVE-2010-1641: The do_gfs2_set_flags function in fs/gfs2/file.c in the Linux kernel did not verify the ownership of a file, which allowed local users to bypass intended access restrictions via a SETFLAGS ioctl request. CVE-2010-1087: The nfs_wait_on_request function in fs/nfs/pagelist.c in Linux kernel 2.6.x allowed attackers to cause a denial of service (Oops) via unknown vectors related to truncating a file and an operation that is not interruptible. CVE-2010-1636: The btrfs_ioctl_clone function in fs/btrfs/ioctl.c in the btrfs functionality in the Linux kernel did not ensure that a cloned file descriptor has been opened for reading, which allowed local users to read sensitive information from a write-only file descriptor. CVE-2010-1437: Race condition in the find_keyring_by_name function in security/keys/keyring.c in the Linux kernel allowed local users to cause a denial of service (memory corruption and system crash) or possibly have unspecified other impact via keyctl session commands that trigger access to a dead keyring that is undergoing deletion by the key_cleanup function. CVE-2010-1148: The cifs_create function in fs/cifs/dir.c in the Linux kernel allowed local users to cause a denial of service (NULL pointer dereference and OOPS) or possibly have unspecified other impact via a NULL nameidata (aka nd) field in a POSIX file-creation request to a server that supports UNIX extensions. CVE-2010-1162: The release_one_tty function in drivers/char/tty_io.c in the Linux kernel omitted certain required calls to the put_pid function, which has unspecified impact and local attack vectors. CVE-2010-1146: The Linux kernel, when a ReiserFS filesystem exists, did not restrict read or write access to the .reiserfs_priv directory, which allowed local users to gain privileges by modifying (1) extended attributes or (2) ACLs, as demonstrated by deleting a file under .reiserfs_priv/xattrs/. CVE-2009-4537: drivers/net/r8169.c in the r8169 driver in the Linux kernel did not properly check the size of an Ethernet frame that exceeds the MTU, which allowed remote attackers to (1) cause a denial of service (temporary network outage) via a packet with a crafted size, in conjunction with certain packets containing A characters and certain packets containing E characters; or (2) cause a denial of service (system crash) via a packet with a crafted size, in conjunction with certain packets containing '\0' characters, related to the value of the status register and erroneous behavior associated with the RxMaxSize register. NOTE: this vulnerability exists because of an incorrect fix for CVE-2009-1389.
    last seen 2019-02-21
    modified 2018-11-10
    plugin id 49671
    published 2010-09-24
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=49671
    title openSUSE Security Update : kernel (openSUSE-SU-2010:0664-1)
  • NASL family SuSE Local Security Checks
    NASL id SUSE_11_KERNEL-100920.NASL
    description This security update of the SUSE Linux Enterprise 11 GA kernel fixes 3 critical security issues. Following security bugs were fixed : - Mismatch between 32bit and 64bit register usage in the system call entry path could be used by local attackers to gain root privileges. This problem only affects x86_64 kernels. (CVE-2010-3301) - Incorrect buffer handling in the biarch-compat buffer handling could be used by local attackers to gain root privileges. This problem affects foremost x86_64, or potentially other biarch platforms, like PowerPC and S390x. (CVE-2010-3081) - Integer overflow in net/can/bcm.c in the Controller Area Network (CAN) implementation in the Linux kernel allowed attackers to execute arbitrary code or cause a denial of service (system crash) via crafted CAN traffic. (CVE-2010-2959)
    last seen 2019-02-21
    modified 2015-01-15
    plugin id 50924
    published 2010-12-02
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=50924
    title SuSE 11 / 11.1 Security Update : Linux kernel (SAT Patch Numbers 3144 / 3147 / 3148 / 3163 / 3171)
  • NASL family Ubuntu Local Security Checks
    NASL id UBUNTU_USN-1093-1.NASL
    description Dan Rosenberg discovered that the RDS network protocol did not correctly check certain parameters. A local attacker could exploit this gain root privileges. (CVE-2010-3904) Nelson Elhage discovered several problems with the Acorn Econet protocol driver. A local user could cause a denial of service via a NULL pointer dereference, escalate privileges by overflowing the kernel stack, and assign Econet addresses to arbitrary interfaces. (CVE-2010-3848, CVE-2010-3849, CVE-2010-3850) Ben Hutchings discovered that the ethtool interface did not correctly check certain sizes. A local attacker could perform malicious ioctl calls that could crash the system, leading to a denial of service. (CVE-2010-2478, CVE-2010-3084) Eric Dumazet discovered that many network functions could leak kernel stack contents. A local attacker could exploit this to read portions of kernel memory, leading to a loss of privacy. (CVE-2010-2942, CVE-2010-3477) Dave Chinner discovered that the XFS filesystem did not correctly order inode lookups when exported by NFS. A remote attacker could exploit this to read or write disk blocks that had changed file assignment or had become unlinked, leading to a loss of privacy. (CVE-2010-2943) Tavis Ormandy discovered that the IRDA subsystem did not correctly shut down. A local attacker could exploit this to cause the system to crash or possibly gain root privileges. (CVE-2010-2954) Brad Spengler discovered that the wireless extensions did not correctly validate certain request sizes. A local attacker could exploit this to read portions of kernel memory, leading to a loss of privacy. (CVE-2010-2955) Tavis Ormandy discovered that the session keyring did not correctly check for its parent. On systems without a default session keyring, a local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-2960) Kees Cook discovered that the Intel i915 graphics driver did not correctly validate memory regions. A local attacker with access to the video card could read and write arbitrary kernel memory to gain root privileges. (CVE-2010-2962) Kees Cook discovered that the V4L1 32bit compat interface did not correctly validate certain parameters. A local attacker on a 64bit system with access to a video device could exploit this to gain root privileges. (CVE-2010-2963) Tavis Ormandy discovered that the AIO subsystem did not correctly validate certain parameters. A local attacker could exploit this to crash the system or possibly gain root privileges. (CVE-2010-3067) Dan Rosenberg discovered that certain XFS ioctls leaked kernel stack contents. A local attacker could exploit this to read portions of kernel memory, leading to a loss of privacy. (CVE-2010-3078) Robert Swiecki discovered that ftrace did not correctly handle mutexes. A local attacker could exploit this to crash the kernel, leading to a denial of service. (CVE-2010-3079) Tavis Ormandy discovered that the OSS sequencer device did not correctly shut down. A local attacker could exploit this to crash the system or possibly gain root privileges. (CVE-2010-3080) Dan Rosenberg discovered that several network ioctls did not clear kernel memory correctly. A local user could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-3296, CVE-2010-3297, CVE-2010-3298) Dan Rosenberg discovered that the ROSE driver did not correctly check parameters. A local attacker with access to a ROSE network device could exploit this to crash the system or possibly gain root privileges. (CVE-2010-3310) Thomas Dreibholz discovered that SCTP did not correctly handle appending packet chunks. A remote attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2010-3432) Dan Rosenberg discovered that the CD driver did not correctly check parameters. A local attacker could exploit this to read arbitrary kernel memory, leading to a loss of privacy. (CVE-2010-3437) Dan Rosenberg discovered that the Sound subsystem did not correctly validate parameters. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-3442) Dan Jacobson discovered that ThinkPad video output was not correctly access controlled. A local attacker could exploit this to hang the system, leading to a denial of service. (CVE-2010-3448) It was discovered that KVM did not correctly initialize certain CPU registers. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-3698) Dan Rosenberg discovered that SCTP did not correctly handle HMAC calculations. A remote attacker could send specially crafted traffic that would crash the system, leading to a denial of service. (CVE-2010-3705) Brad Spengler discovered that stack memory for new a process was not correctly calculated. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-3858) Dan Rosenberg discovered that the Linux kernel TIPC implementation contained multiple integer signedness errors. A local attacker could exploit this to gain root privileges. (CVE-2010-3859) Kees Cook discovered that the ethtool interface did not correctly clear kernel memory. A local attacker could read kernel heap memory, leading to a loss of privacy. (CVE-2010-3861) Thomas Pollet discovered that the RDS network protocol did not check certain iovec buffers. A local attacker could exploit this to crash the system or possibly execute arbitrary code as the root user. (CVE-2010-3865) Dan Rosenberg discovered that the Linux kernel X.25 implementation incorrectly parsed facilities. A remote attacker could exploit this to crash the kernel, leading to a denial of service. (CVE-2010-3873) Dan Rosenberg discovered that the CAN protocol on 64bit systems did not correctly calculate the size of certain buffers. A local attacker could exploit this to crash the system or possibly execute arbitrary code as the root user. (CVE-2010-3874) Vasiliy Kulikov discovered that the Linux kernel X.25 implementation did not correctly clear kernel memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-3875) Vasiliy Kulikov discovered that the Linux kernel sockets implementation did not properly initialize certain structures. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-3876) Vasiliy Kulikov discovered that the TIPC interface did not correctly initialize certain structures. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-3877) Nelson Elhage discovered that the Linux kernel IPv4 implementation did not properly audit certain bytecodes in netlink messages. A local attacker could exploit this to cause the kernel to hang, leading to a denial of service. (CVE-2010-3880) Vasiliy Kulikov discovered that kvm did not correctly clear memory. A local attacker could exploit this to read portions of the kernel stack, leading to a loss of privacy. (CVE-2010-3881) Kees Cook and Vasiliy Kulikov discovered that the shm interface did not clear kernel memory correctly. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4072) Dan Rosenberg discovered that IPC structures were not correctly initialized on 64bit systems. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4073) Dan Rosenberg discovered that multiple terminal ioctls did not correctly initialize structure memory. A local attacker could exploit this to read portions of kernel stack memory, leading to a loss of privacy. (CVE-2010-4075) Dan Rosenberg discovered that the ivtv V4L driver did not correctly initialize certian structures. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4079) Dan Rosenberg discovered that the RME Hammerfall DSP audio interface driver did not correctly clear kernel memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4080, CVE-2010-4081) Dan Rosenberg discovered that the VIA video driver did not correctly clear kernel memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4082) Dan Rosenberg discovered that the semctl syscall did not correctly clear kernel memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4083) James Bottomley discovered that the ICP vortex storage array controller driver did not validate certain sizes. A local attacker on a 64bit system could exploit this to crash the kernel, leading to a denial of service. (CVE-2010-4157) Dan Rosenberg discovered that the socket filters did not correctly initialize structure memory. A local attacker could create malicious filters to read portions of kernel stack memory, leading to a loss of privacy. (CVE-2010-4158) Dan Rosenberg discovered that the Linux kernel L2TP implementation contained multiple integer signedness errors. A local attacker could exploit this to to crash the kernel, or possibly gain root privileges. (CVE-2010-4160) Dan Rosenberg discovered that certain iovec operations did not calculate page counts correctly. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4162) Dan Rosenberg discovered that the SCSI subsystem did not correctly validate iov segments. A local attacker with access to a SCSI device could send specially crafted requests to crash the system, leading to a denial of service. (CVE-2010-4163, CVE-2010-4668) Dan Rosenberg discovered multiple flaws in the X.25 facilities parsing. If a system was using X.25, a remote attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4164) Steve Chen discovered that setsockopt did not correctly check MSS values. A local attacker could make a specially crafted socket call to crash the system, leading to a denial of service. (CVE-2010-4165) Dave Jones discovered that the mprotect system call did not correctly handle merged VMAs. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4169) Dan Rosenberg discovered that the RDS protocol did not correctly check ioctl arguments. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4175) Alan Cox discovered that the HCI UART driver did not correctly check if a write operation was available. If the mmap_min-addr sysctl was changed from the Ubuntu default to a value of 0, a local attacker could exploit this flaw to gain root privileges. (CVE-2010-4242) It was discovered that multithreaded exec did not handle CPU timers correctly. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4248) Vegard Nossum discovered that memory garbage collection was not handled correctly for active sockets. A local attacker could exploit this to allocate all available kernel memory, leading to a denial of service. (CVE-2010-4249) Nelson Elhage discovered that the kernel did not correctly handle process cleanup after triggering a recoverable kernel bug. If a local attacker were able to trigger certain kinds of kernel bugs, they could create a specially crafted process to gain root privileges. (CVE-2010-4258) Krishna Gudipati discovered that the bfa adapter driver did not correctly initialize certain structures. A local attacker could read files in /sys to crash the system, leading to a denial of service. (CVE-2010-4343) Tavis Ormandy discovered that the install_special_mapping function could bypass the mmap_min_addr restriction. A local attacker could exploit this to mmap 4096 bytes below the mmap_min_addr area, possibly improving the chances of performing NULL pointer dereference attacks. (CVE-2010-4346) It was discovered that the ICMP stack did not correctly handle certain unreachable messages. If a remote attacker were able to acquire a socket lock, they could send specially crafted traffic that would crash the system, leading to a denial of service. (CVE-2010-4526) Dan Rosenberg discovered that the OSS subsystem did not handle name termination correctly. A local attacker could exploit this crash the system or gain root privileges. (CVE-2010-4527) An error was reported in the kernel's ORiNOCO wireless driver's handling of TKIP countermeasures. This reduces the amount of time an attacker needs breach a wireless network using WPA+TKIP for security. (CVE-2010-4648) Dan Carpenter discovered that the Infiniband driver did not correctly handle certain requests. A local user could exploit this to crash the system or potentially gain root privileges. (CVE-2010-4649, CVE-2011-1044) An error was discovered in the kernel's handling of CUSE (Character device in Userspace). A local attacker might exploit this flaw to escalate privilege, if access to /dev/cuse has been modified to allow non-root users. (CVE-2010-4650) Kees Cook discovered that some ethtool functions did not correctly clear heap memory. A local attacker with CAP_NET_ADMIN privileges could exploit this to read portions of kernel heap memory, leading to a loss of privacy. (CVE-2010-4655) Kees Cook discovered that the IOWarrior USB device driver did not correctly check certain size fields. A local attacker with physical access could plug in a specially crafted USB device to crash the system or potentially gain root privileges. (CVE-2010-4656) Joel Becker discovered that OCFS2 did not correctly validate on-disk symlink structures. If an attacker were able to trick a user or automated system into mounting a specially crafted filesystem, it could crash the system or expose kernel memory, leading to a loss of privacy. (CVE-2010-NNN2) A flaw was found in the kernel's Integrity Measurement Architecture (IMA). Changes made by an attacker might not be discovered by IMA, if SELinux was disabled, and a new IMA rule was loaded. (CVE-2011-0006) Dan Carpenter discovered that the TTPCI DVB driver did not check certain values during an ioctl. If the dvb-ttpci module was loaded, a local attacker could exploit this to crash the system, leading to a denial of service, or possibly gain root privileges. (CVE-2011-0521) Rafael Dominguez Vega discovered that the caiaq Native Instruments USB driver did not correctly validate string lengths. A local attacker with physical access could plug in a specially crafted USB device to crash the system or potentially gain root privileges. (CVE-2011-0712) Timo Warns discovered that MAC partition parsing routines did not correctly calculate block counts. A local attacker with physical access could plug in a specially crafted block device to crash the system or potentially gain root privileges. (CVE-2011-1010) Timo Warns discovered that LDM partition parsing routines did not correctly calculate block counts. A local attacker with physical access could plug in a specially crafted block device to crash the system, leading to a denial of service. (CVE-2011-1012) Nelson Elhage discovered that the epoll subsystem did not correctly handle certain structures. A local attacker could create malicious requests that would hang the system, leading to a denial of service. (CVE-2011-1082) Johan Hovold discovered that the DCCP network stack did not correctly handle certain packet combinations. A remote attacker could send specially crafted network traffic that would crash the system, leading to a denial of service. (CVE-2011-1093).
    last seen 2019-02-21
    modified 2018-05-21
    plugin id 65103
    published 2013-03-08
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=65103
    title Ubuntu 10.04 LTS / 10.10 : linux-mvl-dove vulnerabilities (USN-1093-1)
  • NASL family Ubuntu Local Security Checks
    NASL id UBUNTU_USN-1000-1.NASL
    description Dan Rosenberg discovered that the RDS network protocol did not correctly check certain parameters. A local attacker could exploit this gain root privileges. (CVE-2010-3904) Al Viro discovered a race condition in the TTY driver. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2009-4895) Dan Rosenberg discovered that the MOVE_EXT ext4 ioctl did not correctly check file permissions. A local attacker could overwrite append-only files, leading to potential data loss. (CVE-2010-2066) Dan Rosenberg discovered that the swapexit xfs ioctl did not correctly check file permissions. A local attacker could exploit this to read from write-only files, leading to a loss of privacy. (CVE-2010-2226) Suresh Jayaraman discovered that CIFS did not correctly validate certain response packats. A remote attacker could send specially crafted traffic that would crash the system, leading to a denial of service. (CVE-2010-2248) Ben Hutchings discovered that the ethtool interface did not correctly check certain sizes. A local attacker could perform malicious ioctl calls that could crash the system, leading to a denial of service. (CVE-2010-2478, CVE-2010-3084) James Chapman discovered that L2TP did not correctly evaluate checksum capabilities. If an attacker could make malicious routing changes, they could crash the system, leading to a denial of service. (CVE-2010-2495) Neil Brown discovered that NFSv4 did not correctly check certain write requests. A remote attacker could send specially crafted traffic that could crash the system or possibly gain root privileges. (CVE-2010-2521) David Howells discovered that DNS resolution in CIFS could be spoofed. A local attacker could exploit this to control DNS replies, leading to a loss of privacy and possible privilege escalation. (CVE-2010-2524) Dan Rosenberg discovered a flaw in gfs2 file system's handling of acls (access control lists). An unprivileged local attacker could exploit this flaw to gain access or execute any file stored in the gfs2 file system. (CVE-2010-2525) Bob Peterson discovered that GFS2 rename operations did not correctly validate certain sizes. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-2798) Eric Dumazet discovered that many network functions could leak kernel stack contents. A local attacker could exploit this to read portions of kernel memory, leading to a loss of privacy. (CVE-2010-2942, CVE-2010-3477) Sergey Vlasov discovered that JFS did not correctly handle certain extended attributes. A local attacker could bypass namespace access rules, leading to a loss of privacy. (CVE-2010-2946) Tavis Ormandy discovered that the IRDA subsystem did not correctly shut down. A local attacker could exploit this to cause the system to crash or possibly gain root privileges. (CVE-2010-2954) Brad Spengler discovered that the wireless extensions did not correctly validate certain request sizes. A local attacker could exploit this to read portions of kernel memory, leading to a loss of privacy. (CVE-2010-2955) Tavis Ormandy discovered that the session keyring did not correctly check for its parent. On systems without a default session keyring, a local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-2960) Kees Cook discovered that the V4L1 32bit compat interface did not correctly validate certain parameters. A local attacker on a 64bit system with access to a video device could exploit this to gain root privileges. (CVE-2010-2963) Toshiyuki Okajima discovered that ext4 did not correctly check certain parameters. A local attacker could exploit this to crash the system or overwrite the last block of large files. (CVE-2010-3015) Tavis Ormandy discovered that the AIO subsystem did not correctly validate certain parameters. A local attacker could exploit this to crash the system or possibly gain root privileges. (CVE-2010-3067) Dan Rosenberg discovered that certain XFS ioctls leaked kernel stack contents. A local attacker could exploit this to read portions of kernel memory, leading to a loss of privacy. (CVE-2010-3078) Tavis Ormandy discovered that the OSS sequencer device did not correctly shut down. A local attacker could exploit this to crash the system or possibly gain root privileges. (CVE-2010-3080) Dan Rosenberg discovered that the ROSE driver did not correctly check parameters. A local attacker with access to a ROSE network device could exploit this to crash the system or possibly gain root privileges. (CVE-2010-3310) Thomas Dreibholz discovered that SCTP did not correctly handle appending packet chunks. A remote attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2010-3432) Dan Rosenberg discovered that the CD driver did not correctly check parameters. A local attacker could exploit this to read arbitrary kernel memory, leading to a loss of privacy. (CVE-2010-3437) Dan Rosenberg discovered that the Sound subsystem did not correctly validate parameters. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-3442) Dan Rosenberg discovered that SCTP did not correctly handle HMAC calculations. A remote attacker could send specially crafted traffic that would crash the system, leading to a denial of service. (CVE-2010-3705) Joel Becker discovered that OCFS2 did not correctly validate on-disk symlink structures. If an attacker were able to trick a user or automated system into mounting a specially crafted filesystem, it could crash the system or expose kernel memory, leading to a loss of privacy. (CVE-2010-NNN2). Note that Tenable Network Security has extracted the preceding description block directly from the Ubuntu security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen 2019-02-21
    modified 2018-12-01
    plugin id 50044
    published 2010-10-20
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=50044
    title Ubuntu 6.06 LTS / 8.04 LTS / 9.04 / 9.10 / 10.04 LTS / 10.10 : linux, linux-ec2, linux-source-2.6.15 vulnerabilities (USN-1000-1)
  • NASL family Scientific Linux Local Security Checks
    NASL id SL_20101110_KERNEL_ON_SL6_X.NASL
    description This update fixes the following security issues : - Missing sanity checks in the Intel i915 driver in the Linux kernel could allow a local, unprivileged user to escalate their privileges. (CVE-2010-2962, Important) - compat_alloc_user_space() in the Linux kernel 32/64-bit compatibility layer implementation was missing sanity checks. This function could be abused in other areas of the Linux kernel if its length argument can be controlled from user-space. On 64-bit systems, a local, unprivileged user could use this flaw to escalate their privileges. (CVE-2010-3081, Important) - A buffer overflow flaw in niu_get_ethtool_tcam_all() in the niu Ethernet driver in the Linux kernel, could allow a local user to cause a denial of service or escalate their privileges. (CVE-2010-3084, Important) - A flaw in the IA32 system call emulation provided in 64-bit Linux kernels could allow a local user to escalate their privileges. (CVE-2010-3301, Important) - A flaw in sctp_packet_config() in the Linux kernel's Stream Control Transmission Protocol (SCTP) implementation could allow a remote attacker to cause a denial of service. (CVE-2010-3432, Important) - A missing integer overflow check in snd_ctl_new() in the Linux kernel's sound subsystem could allow a local, unprivileged user on a 32-bit system to cause a denial of service or escalate their privileges. (CVE-2010-3442, Important) - A flaw was found in sctp_auth_asoc_get_hmac() in the Linux kernel's SCTP implementation. When iterating through the hmac_ids array, it did not reset the last id element if it was out of range. This could allow a remote attacker to cause a denial of service. (CVE-2010-3705, Important) - A function in the Linux kernel's Reliable Datagram Sockets (RDS) protocol implementation was missing sanity checks, which could allow a local, unprivileged user to escalate their privileges. (CVE-2010-3904, Important) - A flaw in drm_ioctl() in the Linux kernel's Direct Rendering Manager (DRM) implementation could allow a local, unprivileged user to cause an information leak. (CVE-2010-2803, Moderate) - It was found that wireless drivers might not always clear allocated buffers when handling a driver-specific IOCTL information request. A local user could trigger this flaw to cause an information leak. (CVE-2010-2955, Moderate) - A NULL pointer dereference flaw in ftrace_regex_lseek() in the Linux kernel's ftrace implementation could allow a local, unprivileged user to cause a denial of service. Note: The debugfs file system must be mounted locally to exploit this issue. It is not mounted by default. (CVE-2010-3079, Moderate) - A flaw in the Linux kernel's packet writing driver could be triggered via the PKT_CTRL_CMD_STATUS IOCTL request, possibly allowing a local, unprivileged user with access to '/dev/pktcdvd/control' to cause an information leak. Note: By default, only users in the cdrom group have access to '/dev/pktcdvd/control'. (CVE-2010-3437, Moderate) - A flaw was found in the way KVM (Kernel-based Virtual Machine) handled the reloading of fs and gs segment registers when they had invalid selectors. A privileged host user with access to '/dev/kvm' could use this flaw to crash the host. (CVE-2010-3698, Moderate) This update also fixes several bugs. The system must be rebooted for this update to take effect.
    last seen 2019-02-21
    modified 2019-01-02
    plugin id 60893
    published 2012-08-01
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=60893
    title Scientific Linux Security Update : kernel on SL6.x i386/x86_64
  • NASL family Fedora Local Security Checks
    NASL id FEDORA_2011-6447.NASL
    description Update to kernel 2.6.34.9 : http://ftp.kernel.org/pub/linux/kernel/v2.6/longterm/v2.6.34/ChangeLog -2.6.34.9 Note that Tenable Network Security has extracted the preceding description block directly from the Fedora security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen 2019-02-21
    modified 2018-07-12
    plugin id 55386
    published 2011-06-22
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=55386
    title Fedora 13 : kernel-2.6.34.9-69.fc13 (2011-6447)
  • NASL family SuSE Local Security Checks
    NASL id SUSE_11_3_KERNEL-100921.NASL
    description This update of the openSUSE 11.3 kernel fixes two local root exploits, various other security issues and some bugs. Following security issues are fixed by this update: CVE-2010-3301: Mismatch between 32bit and 64bit register usage in the system call entry path could be used by local attackers to gain root privileges. This problem only affects x86_64 kernels. CVE-2010-3081: Incorrect buffer handling in the biarch-compat buffer handling could be used by local attackers to gain root privileges. This problem affects foremost x86_64, or potentially other biarch platforms, like PowerPC and S390x. CVE-2010-3084: A buffer overflow in the ETHTOOL_GRXCLSRLALL code could be used to crash the kernel or potentially execute code. CVE-2010-2955: A kernel information leak via the WEXT ioctl was fixed. CVE-2010-2960: The keyctl_session_to_parent function in security/keys/keyctl.c in the Linux kernel expects that a certain parent session keyring exists, which allows local users to cause a denial of service (NULL pointer dereference and system crash) or possibly have unspecified other impact via a KEYCTL_SESSION_TO_PARENT argument to the keyctl function. CVE-2010-3080: A double free in an alsa error path was fixed, which could lead to kernel crashes. CVE-2010-3079: Fixed a ftrace NULL pointer dereference problem which could lead to kernel crashes. CVE-2010-3298: Fixed a kernel information leak in the net/usb/hso driver. CVE-2010-3296: Fixed a kernel information leak in the cxgb3 driver. CVE-2010-3297: Fixed a kernel information leak in the net/eql driver.
    last seen 2019-02-21
    modified 2018-11-10
    plugin id 75550
    published 2014-06-13
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=75550
    title openSUSE Security Update : kernel (openSUSE-SU-2010:0655-1)
  • NASL family Red Hat Local Security Checks
    NASL id REDHAT-RHSA-2010-0842.NASL
    description Updated kernel packages that fix multiple security issues and several bugs are now available for Red Hat Enterprise Linux 6. The Red Hat Security Response Team has rated this update as having important security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. [Updated 22 November 2010] The packages list in this erratum has been updated to include four missing debuginfo-common packages (one per architecture). No changes have been made to the original packages. The kernel packages contain the Linux kernel, the core of any Linux operating system. This update fixes the following security issues : * Missing sanity checks in the Intel i915 driver in the Linux kernel could allow a local, unprivileged user to escalate their privileges. (CVE-2010-2962, Important) * compat_alloc_user_space() in the Linux kernel 32/64-bit compatibility layer implementation was missing sanity checks. This function could be abused in other areas of the Linux kernel if its length argument can be controlled from user-space. On 64-bit systems, a local, unprivileged user could use this flaw to escalate their privileges. (CVE-2010-3081, Important) * A buffer overflow flaw in niu_get_ethtool_tcam_all() in the niu Ethernet driver in the Linux kernel, could allow a local user to cause a denial of service or escalate their privileges. (CVE-2010-3084, Important) * A flaw in the IA32 system call emulation provided in 64-bit Linux kernels could allow a local user to escalate their privileges. (CVE-2010-3301, Important) * A flaw in sctp_packet_config() in the Linux kernel's Stream Control Transmission Protocol (SCTP) implementation could allow a remote attacker to cause a denial of service. (CVE-2010-3432, Important) * A missing integer overflow check in snd_ctl_new() in the Linux kernel's sound subsystem could allow a local, unprivileged user on a 32-bit system to cause a denial of service or escalate their privileges. (CVE-2010-3442, Important) * A flaw was found in sctp_auth_asoc_get_hmac() in the Linux kernel's SCTP implementation. When iterating through the hmac_ids array, it did not reset the last id element if it was out of range. This could allow a remote attacker to cause a denial of service. (CVE-2010-3705, Important) * A function in the Linux kernel's Reliable Datagram Sockets (RDS) protocol implementation was missing sanity checks, which could allow a local, unprivileged user to escalate their privileges. (CVE-2010-3904, Important) * A flaw in drm_ioctl() in the Linux kernel's Direct Rendering Manager (DRM) implementation could allow a local, unprivileged user to cause an information leak. (CVE-2010-2803, Moderate) * It was found that wireless drivers might not always clear allocated buffers when handling a driver-specific IOCTL information request. A local user could trigger this flaw to cause an information leak. (CVE-2010-2955, Moderate) * A NULL pointer dereference flaw in ftrace_regex_lseek() in the Linux kernel's ftrace implementation could allow a local, unprivileged user to cause a denial of service. Note: The debugfs file system must be mounted locally to exploit this issue. It is not mounted by default. (CVE-2010-3079, Moderate) * A flaw in the Linux kernel's packet writing driver could be triggered via the PKT_CTRL_CMD_STATUS IOCTL request, possibly allowing a local, unprivileged user with access to '/dev/pktcdvd/control' to cause an information leak. Note: By default, only users in the cdrom group have access to '/dev/pktcdvd/control'. (CVE-2010-3437, Moderate) * A flaw was found in the way KVM (Kernel-based Virtual Machine) handled the reloading of fs and gs segment registers when they had invalid selectors. A privileged host user with access to '/dev/kvm' could use this flaw to crash the host. (CVE-2010-3698, Moderate) Red Hat would like to thank Kees Cook for reporting CVE-2010-2962 and CVE-2010-2803; Ben Hawkes for reporting CVE-2010-3081 and CVE-2010-3301; Dan Rosenberg for reporting CVE-2010-3442, CVE-2010-3705, CVE-2010-3904, and CVE-2010-3437; and Robert Swiecki for reporting CVE-2010-3079. This update also fixes several bugs. Documentation for these bug fixes will be available shortly from the Technical Notes document linked to in the References section. Users should upgrade to these updated packages, which contain backported patches to correct these issues. The system must be rebooted for this update to take effect.
    last seen 2019-02-21
    modified 2018-11-28
    plugin id 50629
    published 2010-11-18
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=50629
    title RHEL 6 : kernel (RHSA-2010:0842)
  • NASL family Oracle Linux Local Security Checks
    NASL id ORACLELINUX_ELSA-2010-2011.NASL
    description Description of changes: Following Security fixes are included in this unbreakable enterprise kernel errata: CVE-2010-3432 The sctp_packet_config function in net/sctp/output.c in the Linux kernel before 2.6.35.6 performs extraneous initializations of packet data structures, which allows remote attackers to cause a denial of service (panic) via a certain sequence of SCTP traffic. CVE-2010-2962 drivers/gpu/drm/i915/i915_gem.c in the Graphics Execution Manager (GEM) in the Intel i915 driver in the Direct Rendering Manager (DRM) subsystem in the Linux kernel before 2.6.36 does not properly validate pointers to blocks of memory, which allows local users to write to arbitrary kernel memory locations, and consequently gain privileges, via crafted use of the ioctl interface, related to (1) pwrite and (2) pread operations. CVE-2010-2955 The cfg80211_wext_giwessid function in net/wireless/wext-compat.c in the Linux kernel before 2.6.36-rc3-next-20100831 does not properly initialize certain structure members, which allows local users to leverage an off-by-one error in the ioctl_standard_iw_point function in net/wireless/wext-core.c, and obtain potentially sensitive information from kernel heap memory, via vectors involving an SIOCGIWESSID ioctl call that specifies a large buffer size. CVE-2010-3705 The sctp_auth_asoc_get_hmac function in net/sctp/auth.c in the Linux kernel before 2.6.36 does not properly validate the hmac_ids array of an SCTP peer, which allows remote attackers to cause a denial of service (memory corruption and panic) via a crafted value in the last element of this array. CVE-2010-3084 Buffer overflow in the niu_get_ethtool_tcam_all function in drivers/net/niu.c in the Linux kernel before 2.6.36-rc4 allows local users to cause a denial of service or possibly have unspecified other impact via the ETHTOOL_GRXCLSRLALL ethtool command. CVE-2010-3437 Integer signedness error in the pkt_find_dev_from_minor function in drivers/block/pktcdvd.c in the Linux kernel before 2.6.36-rc6 allows local users to obtain sensitive information from kernel memory or cause a denial of service (invalid pointer dereference and system crash) via a crafted index value in a PKT_CTRL_CMD_STATUS ioctl call. CVE-2010-3079 kernel/trace/ftrace.c in the Linux kernel before 2.6.35.5, when debugfs is enabled, does not properly handle interaction between mutex possession and llseek operations, which allows local users to cause a denial of service (NULL pointer dereference and outage of all function tracing files) via an lseek call on a file descriptor associated with the set_ftrace_filter file. CVE-2010-3698 The KVM implementation in the Linux kernel before 2.6.36 does not properly reload the FS and GS segment registers, which allows host OS users to cause a denial of service (host OS crash) via a KVM_RUN ioctl call in conjunction with a modified Local Descriptor Table (LDT). CVE-2010-3442 Multiple integer overflows in the snd_ctl_new function in sound/core/control.c in the Linux kernel before 2.6.36-rc5-next-20100929 allow local users to cause a denial of service (heap memory corruption) or possibly have unspecified other impact via a crafted (1) SNDRV_CTL_IOCTL_ELEM_ADD or (2) SNDRV_CTL_IOCTL_ELEM_REPLACE ioctl call. [2.6.32-100.24.1.el5] - [sctp] Do not reset the packet during sctp_packet_con[CVE-2010-3432] - [drm/i915] Sanity check pread/pwrite [CVE-2010-2962] - [wireless] fix kernel heap content leak [CVE-2010-2955] - [sctp] Fix out-of-bounds reading in sctp_asoc_get_hmac() [CVE-2010-3705] - [niu] Fix kernel buffer overflow for ETHTOOL_GRXCLSRLALL [CVE-2010-3084] - Fix pktcdvd ioctl dev_minor range check [CVE-2010-3437] - Do not allow llseek to set_ftrace_filter [CVE-2010-3079] - [kvm] Fix fs/gs reload oops with invalid ldt [CVE-2010-3698] - [alsa] prevent heap corruption in snd_ctl_new() [CVE-2010-3442] - Fix LACP bonding mode (Tina Yang) - Fix grat arps on bonded interfaces (Tina Yang)
    last seen 2019-02-21
    modified 2016-01-14
    plugin id 68175
    published 2013-07-12
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=68175
    title Oracle Linux 5 : Unbreakable Enterprise kernel (ELSA-2010-2011)
  • NASL family Ubuntu Local Security Checks
    NASL id UBUNTU_USN-1083-1.NASL
    description Dan Rosenberg discovered that the RDS network protocol did not correctly check certain parameters. A local attacker could exploit this gain root privileges. (CVE-2010-3904) Nelson Elhage discovered several problems with the Acorn Econet protocol driver. A local user could cause a denial of service via a NULL pointer dereference, escalate privileges by overflowing the kernel stack, and assign Econet addresses to arbitrary interfaces. (CVE-2010-3848, CVE-2010-3849, CVE-2010-3850) Ben Hawkes discovered that the Linux kernel did not correctly filter registers on 64bit kernels when performing 32bit system calls. On a 64bit system, a local attacker could manipulate 32bit system calls to gain root privileges. (CVE-2010-3301) Al Viro discovered a race condition in the TTY driver. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2009-4895) Gleb Napatov discovered that KVM did not correctly check certain privileged operations. A local attacker with access to a guest kernel could exploit this to crash the host system, leading to a denial of service. (CVE-2010-0435) Dan Rosenberg discovered that the MOVE_EXT ext4 ioctl did not correctly check file permissions. A local attacker could overwrite append-only files, leading to potential data loss. (CVE-2010-2066) Dan Rosenberg discovered that the swapexit xfs ioctl did not correctly check file permissions. A local attacker could exploit this to read from write-only files, leading to a loss of privacy. (CVE-2010-2226) Suresh Jayaraman discovered that CIFS did not correctly validate certain response packats. A remote attacker could send specially crafted traffic that would crash the system, leading to a denial of service. (CVE-2010-2248) Ben Hutchings discovered that the ethtool interface did not correctly check certain sizes. A local attacker could perform malicious ioctl calls that could crash the system, leading to a denial of service. (CVE-2010-2478, CVE-2010-3084) James Chapman discovered that L2TP did not correctly evaluate checksum capabilities. If an attacker could make malicious routing changes, they could crash the system, leading to a denial of service. (CVE-2010-2495) Neil Brown discovered that NFSv4 did not correctly check certain write requests. A remote attacker could send specially crafted traffic that could crash the system or possibly gain root privileges. (CVE-2010-2521) David Howells discovered that DNS resolution in CIFS could be spoofed. A local attacker could exploit this to control DNS replies, leading to a loss of privacy and possible privilege escalation. (CVE-2010-2524) Dan Rosenberg discovered that the btrfs filesystem did not correctly validate permissions when using the clone function. A local attacker could overwrite the contents of file handles that were opened for append-only, or potentially read arbitrary contents, leading to a loss of privacy. (CVE-2010-2537, CVE-2010-2538) Bob Peterson discovered that GFS2 rename operations did not correctly validate certain sizes. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-2798) Eric Dumazet discovered that many network functions could leak kernel stack contents. A local attacker could exploit this to read portions of kernel memory, leading to a loss of privacy. (CVE-2010-2942, CVE-2010-3477) Dave Chinner discovered that the XFS filesystem did not correctly order inode lookups when exported by NFS. A remote attacker could exploit this to read or write disk blocks that had changed file assignment or had become unlinked, leading to a loss of privacy. (CVE-2010-2943) Sergey Vlasov discovered that JFS did not correctly handle certain extended attributes. A local attacker could bypass namespace access rules, leading to a loss of privacy. (CVE-2010-2946) Tavis Ormandy discovered that the IRDA subsystem did not correctly shut down. A local attacker could exploit this to cause the system to crash or possibly gain root privileges. (CVE-2010-2954) Brad Spengler discovered that the wireless extensions did not correctly validate certain request sizes. A local attacker could exploit this to read portions of kernel memory, leading to a loss of privacy. (CVE-2010-2955) Tavis Ormandy discovered that the session keyring did not correctly check for its parent. On systems without a default session keyring, a local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-2960) Kees Cook discovered that the Intel i915 graphics driver did not correctly validate memory regions. A local attacker with access to the video card could read and write arbitrary kernel memory to gain root privileges. (CVE-2010-2962) Kees Cook discovered that the V4L1 32bit compat interface did not correctly validate certain parameters. A local attacker on a 64bit system with access to a video device could exploit this to gain root privileges. (CVE-2010-2963) Toshiyuki Okajima discovered that ext4 did not correctly check certain parameters. A local attacker could exploit this to crash the system or overwrite the last block of large files. (CVE-2010-3015) Tavis Ormandy discovered that the AIO subsystem did not correctly validate certain parameters. A local attacker could exploit this to crash the system or possibly gain root privileges. (CVE-2010-3067) Dan Rosenberg discovered that certain XFS ioctls leaked kernel stack contents. A local attacker could exploit this to read portions of kernel memory, leading to a loss of privacy. (CVE-2010-3078) Robert Swiecki discovered that ftrace did not correctly handle mutexes. A local attacker could exploit this to crash the kernel, leading to a denial of service. (CVE-2010-3079) Tavis Ormandy discovered that the OSS sequencer device did not correctly shut down. A local attacker could exploit this to crash the system or possibly gain root privileges. (CVE-2010-3080) Dan Rosenberg discovered that several network ioctls did not clear kernel memory correctly. A local user could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-3296, CVE-2010-3297, CVE-2010-3298) Dan Rosenberg discovered that the ROSE driver did not correctly check parameters. A local attacker with access to a ROSE network device could exploit this to crash the system or possibly gain root privileges. (CVE-2010-3310) Thomas Dreibholz discovered that SCTP did not correctly handle appending packet chunks. A remote attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2010-3432) Dan Rosenberg discovered that the CD driver did not correctly check parameters. A local attacker could exploit this to read arbitrary kernel memory, leading to a loss of privacy. (CVE-2010-3437) Dan Rosenberg discovered that the Sound subsystem did not correctly validate parameters. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-3442) Dan Rosenberg discovered that SCTP did not correctly handle HMAC calculations. A remote attacker could send specially crafted traffic that would crash the system, leading to a denial of service. (CVE-2010-3705) Brad Spengler discovered that stack memory for new a process was not correctly calculated. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-3858) Dan Rosenberg discovered that the Linux kernel TIPC implementation contained multiple integer signedness errors. A local attacker could exploit this to gain root privileges. (CVE-2010-3859) Kees Cook discovered that the ethtool interface did not correctly clear kernel memory. A local attacker could read kernel heap memory, leading to a loss of privacy. (CVE-2010-3861) Dan Rosenberg discovered that the CAN protocol on 64bit systems did not correctly calculate the size of certain buffers. A local attacker could exploit this to crash the system or possibly execute arbitrary code as the root user. (CVE-2010-3874) Kees Cook and Vasiliy Kulikov discovered that the shm interface did not clear kernel memory correctly. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4072) Dan Rosenberg discovered that IPC structures were not correctly initialized on 64bit systems. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4073) Dan Rosenberg discovered that the RME Hammerfall DSP audio interface driver did not correctly clear kernel memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4080, CVE-2010-4081) Dan Rosenberg discovered that the VIA video driver did not correctly clear kernel memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4082) James Bottomley discovered that the ICP vortex storage array controller driver did not validate certain sizes. A local attacker on a 64bit system could exploit this to crash the kernel, leading to a denial of service. (CVE-2010-4157) Dan Rosenberg discovered that the socket filters did not correctly initialize structure memory. A local attacker could create malicious filters to read portions of kernel stack memory, leading to a loss of privacy. (CVE-2010-4158) Dan Rosenberg discovered that the Linux kernel L2TP implementation contained multiple integer signedness errors. A local attacker could exploit this to to crash the kernel, or possibly gain root privileges. (CVE-2010-4160) Dan Rosenberg discovered that certain iovec operations did not calculate page counts correctly. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4162) Dan Rosenberg discovered multiple flaws in the X.25 facilities parsing. If a system was using X.25, a remote attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4164) Steve Chen discovered that setsockopt did not correctly check MSS values. A local attacker could make a specially crafted socket call to crash the system, leading to a denial of service. (CVE-2010-4165) Dave Jones discovered that the mprotect system call did not correctly handle merged VMAs. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4169) Dan Rosenberg discovered that the RDS protocol did not correctly check ioctl arguments. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4175) Alan Cox discovered that the HCI UART driver did not correctly check if a write operation was available. If the mmap_min-addr sysctl was changed from the Ubuntu default to a value of 0, a local attacker could exploit this flaw to gain root privileges. (CVE-2010-4242) Brad Spengler discovered that the kernel did not correctly account for userspace memory allocations during exec() calls. A local attacker could exploit this to consume all system memory, leading to a denial of service. (CVE-2010-4243) Vegard Nossum discovered that memory garbage collection was not handled correctly for active sockets. A local attacker could exploit this to allocate all available kernel memory, leading to a denial of service. (CVE-2010-4249) It was discovered that named pipes did not correctly handle certain fcntl calls. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4256) Nelson Elhage discovered that the kernel did not correctly handle process cleanup after triggering a recoverable kernel bug. If a local attacker were able to trigger certain kinds of kernel bugs, they could create a specially crafted process to gain root privileges. (CVE-2010-4258) Kees Cook discovered that some ethtool functions did not correctly clear heap memory. A local attacker with CAP_NET_ADMIN privileges could exploit this to read portions of kernel heap memory, leading to a loss of privacy. (CVE-2010-4655) Frank Arnold discovered that the IGMP protocol did not correctly parse certain packets. A remote attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2011-0709). Note that Tenable Network Security has extracted the preceding description block directly from the Ubuntu security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen 2019-02-21
    modified 2018-12-01
    plugin id 65101
    published 2013-03-09
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=65101
    title Ubuntu 10.04 LTS : linux-lts-backport-maverick vulnerabilities (USN-1083-1)
redhat via4
advisories
rhsa
id RHSA-2010:0842
rpms
  • kernel-0:2.6.32-71.7.1.el6
  • kernel-bootwrapper-0:2.6.32-71.7.1.el6
  • kernel-debug-0:2.6.32-71.7.1.el6
  • kernel-debug-devel-0:2.6.32-71.7.1.el6
  • kernel-devel-0:2.6.32-71.7.1.el6
  • kernel-doc-0:2.6.32-71.7.1.el6
  • kernel-firmware-0:2.6.32-71.7.1.el6
  • kernel-headers-0:2.6.32-71.7.1.el6
  • kernel-kdump-0:2.6.32-71.7.1.el6
  • kernel-kdump-devel-0:2.6.32-71.7.1.el6
  • perf-0:2.6.32-71.7.1.el6
refmap via4
bid 43098
confirm
mlist
  • [netdev] 20100907 [PATCH net-2.6] niu: Fix kernel buffer overflow for ETHTOOL_GRXCLSRLALL
  • [oss-security] 20100909 CVE request: kernel: niu buffer overflow for ETHTOOL_GRXCLSRLALL
  • [oss-security] 20100910 Re: CVE request: kernel: niu buffer overflow for ETHTOOL_GRXCLSRLALL
suse SUSE-SA:2011:007
ubuntu USN-1000-1
vupen ADV-2011-0298
Last major update 19-03-2012 - 00:00
Published 29-09-2010 - 13:00
Last modified 19-11-2018 - 12:26
Back to Top